LTC2498IUHF#PBF Linear Technology, LTC2498IUHF#PBF Datasheet - Page 16

IC ADC 24BIT 16CH 38-QFN

LTC2498IUHF#PBF

Manufacturer Part Number
LTC2498IUHF#PBF
Description
IC ADC 24BIT 16CH 38-QFN
Manufacturer
Linear Technology
Datasheet

Specifications of LTC2498IUHF#PBF

Number Of Bits
24
Sampling Rate (per Second)
7.5
Data Interface
MICROWIRE™, Serial, SPI™
Number Of Converters
1
Power Dissipation (max)
480µW
Voltage Supply Source
Single Supply
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
38-WFQFN, Exposed Pad
Number Of Elements
1
Resolution
24Bit
Architecture
Delta-Sigma
Sample Rate
0.008KSPS
Input Polarity
Bipolar
Input Type
Voltage
Rated Input Volt
±2.75V
Differential Input
Yes
Power Supply Requirement
Single
Single Supply Voltage (typ)
3.3/5V
Single Supply Voltage (min)
2.7V
Single Supply Voltage (max)
5.5V
Dual Supply Voltage (typ)
Not RequiredV
Dual Supply Voltage (min)
Not RequiredV
Dual Supply Voltage (max)
Not RequiredV
Integral Nonlinearity Error
10ppm of Vref
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
38
Package Type
QFN EP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Company:
Part Number:
LTC2498IUHF#PBFLTC2498IUHF
Manufacturer:
LT
Quantity:
10 000
Company:
Part Number:
LTC2498IUHF#PBF/CU
Manufacturer:
LT
Quantity:
503
applications inForMation
LTC2498
In order to achieve optimum performance, if an external
amplifier is not used, short these pins directly together
(ADCINP to MUXOUTP and ADCINN to MUXOUTN) and
minimize their capacitance to ground.
SERIAL INTERFACE PINS
The LTC2498 transmits the conversion result, reads the
input configuration, and receives a start of conversion
command through a synchronous 3- or 4-wire interface.
During the conversion and sleep states, this interface
can be used to access the converter status. During the
data output state, it is used to read the conversion result,
program the input channel, rejection frequency, speed
multiplier, and select the temperature sensor.
Serial Clock Input/Output (SCK)
The serial clock pin (SCK) is used to synchronize the data
input/output transfer. Each bit is shifted out of the SDO
pin on the falling edge of SCK and data is shifted into the
SDI pin on the rising edge of SCK.
The serial clock pin (SCK) can be configured as either a
master (SCK is an output generated internally) or a slave
(SCK is an input and applied externally). Master mode
(internal SCK) is selected by simply floating the SCK pin.
Slave mode (external SCK) is selected by driving SCK LOW
during power-up and each falling edge of CS. Specific
details of these SCK modes are described in the Serial
Interface Timing Modes section.
Serial Data Output (SDO)
The serial data output pin (SDO) provides the result of the
last conversion as a serial bit stream (MSB first) during
the data output state. In addition, the SDO pin is used as
an end of conversion indicator during the conversion and
sleep states.
When CS is HIGH, the SDO driver is switched to a high
impedance state in order to share the data output line with
other devices. If CS is brought LOW during the conversion
phase, the EOC bit (SDO pin) will be driven HIGH. Once
the conversion is complete, if CS is brought LOW, EOC will

be driven LOW indicating the conversion is complete and
the result is ready to be shifted out of the device.
Chip Select (CS)
The active low CS pin is used to test the conversion status,
enable I/O data transfer, initiate a new conversion, control
the duration of the sleep state, and set the SCK mode.
At the conclusion of a conversion cycle, while CS is HIGH,
the device remains in a low power sleep state where the
supply current is reduced several orders of magnitude.
In order to exit the sleep state and enter the data output
state, CS must be pulled LOW. Data is now shifted out
the SDO pin under control of the SCK pin as described
previously.
A new conversion cycle is initiated either at the conclusion
of the data output cycle (all 32 data bits read) or by pulling
CS HIGH any time between the first and 32nd rising edges
of the serial clock (SCK). In this case, the data output is
aborted and a new conversion begins.
Serial Data Input (SDI)
The serial data input (SDI) is used to select the input chan-
nel, rejection frequency, speed multiplier and to access
the integrated temperature sensor. Data is shifted into the
device during the data output/input state on the rising edge
of SCK while CS is LOW.
OUTPUT DATA FORMAT
The LTC2498 serial output stream is 32 bits long. The
first bit indicates the conversion status, the second bit is
always zero, and the third bit conveys sign information.
The next 24 bits are the conversion result, MSB first. The
remaining 5 bits are sub LSBs beyond the 24-bit level
that may be included in averaging or discarded without
loss of resolution.
Bit 31 (first output bit) is the end of conversion (EOC)
indicator. This bit is available on the SDO pin during the
conversion and sleep states whenever CS is LOW. This bit
is HIGH during the conversion cycle, goes LOW once the
conversion is complete, and is Hi-Z when CS is HIGH.
2498fe

Related parts for LTC2498IUHF#PBF