PIC18F86K90-I/PT Microchip Technology, PIC18F86K90-I/PT Datasheet - Page 48

no-image

PIC18F86K90-I/PT

Manufacturer Part Number
PIC18F86K90-I/PT
Description
64kB Flash, 4kB RAM, 1kB EE, 16MIPS, NanoWatt XLP, LCD, 5V 80 TQFP 12x12x1mm TRA
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F86K90-I/PT

Core Processor
PIC
Core Size
8-Bit
Speed
64MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
69
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 24x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
80-TQFP
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F86K90-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F86K90-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
PIC18F86K90-I/PT
Quantity:
492
Part Number:
PIC18F86K90-I/PTRSL
Manufacturer:
Microchip Technology
Quantity:
10 000
PIC18F87K90 FAMILY
3.6.2
The 4x Phase Locked Loop (PLL) can be used with the
HF-INTOSC to produce faster device clock speeds
than are normally possible with the internal oscillator
sources. When enabled, the PLL produces a clock
speed of 16 MHz or 64 MHz.
PLL operation is controlled through software. The con-
trol bits, PLLEN (OSCTUNE<6>) and PLLCFG
(CONFIG1H<4>), are used to enable or disable its
operation. The PLL is available only to HF-INTOSC
and the other oscillator is set with HS and EC modes.
Additionally, the PLL will only function when the
selected output frequency is either 4 MHz or 16 MHz
(OSCCON<6:4> = 111, 110 or 101).
Like the INTIO modes, there are two distinct INTPLL
modes available:
• In INTPLL1 mode, the OSC2 pin outputs F
• In INTPLL2 mode, OSC1 functions as RA7 and
3.6.3
The internal oscillator block is calibrated at the factory
to produce an INTOSC output frequency of 16 MHz. It
can be adjusted in the user’s application by writing to
TUN<5:0>
register (Register 3-3).
When the OSCTUNE register is modified, the INTOSC
(HF-INTOSC and MF-INTOSC) frequency will begin
shifting to the new frequency. The oscillator will require
some time to stabilize. Code execution continues
during this shift and there is no indication that the shift
has occurred.
The LF-INTOSC oscillator operates independently of
the HF-INTOSC or the MF-INTOSC source. Any
changes in the HF-INTOSC or the MF-INTOSC source,
across voltage and temperature, are not necessarily
reflected by changes in LF-INTOSC or vice versa. The
frequency of LF-INTOSC is not affected by OSCTUNE.
3.6.4
The INTOSC frequency may drift as V
ture changes, and can affect the controller operation in
a variety of ways. It is possible to adjust the INTOSC
frequency by modifying the value in the OSCTUNE
register. Depending on the device, this may have no
effect on the LF-INTOSC clock source frequency.
DS39957B-page 48
while OSC1 functions as RA7 for digital input and
output. Externally, this is identical in appearance
to INTIO1 (Figure 3-8).
OSC2 functions as RA6, both for digital input and
output. Externally, this is identical to INTIO2
(Figure 3-9).
INTPLL MODES
INTERNAL OSCILLATOR OUTPUT
FREQUENCY AND TUNING
INTOSC FREQUENCY DRIFT
(OSCTUNE<5:0>)
in
the
DD
or tempera-
OSCTUNE
OSC
/4,
Preliminary
compensation techniques are shown here.
Tuning INTOSC requires knowing when to make the
adjustment, in which direction it should be made, and in
some cases, how large a change is needed. Three
3.6.4.1
An adjustment may be required when the EUSART
begins to generate framing errors or receives data with
errors while in Asynchronous mode. Framing errors
indicate that the device clock frequency is too high. To
adjust for this, decrement the value in OSCTUNE to
reduce the clock frequency. On the other hand, errors
in data may suggest that the clock speed is too low. To
compensate, increment OSCTUNE to increase the
clock frequency.
3.6.4.2
This technique compares device clock speed to some
reference clock. Two timers may be used; one timer is
clocked by the peripheral clock, while the other is
clocked by a fixed reference source, such as the SOSC
oscillator.
Both timers are cleared, but the timer clocked by the
reference generates interrupts. When an interrupt
occurs, the internally clocked timer is read and both
timers are cleared. If the internally clocked timer value
is much greater than expected, then the internal
oscillator block is running too fast. To adjust for this,
decrement the OSCTUNE register.
3.6.4.3
A CCP module can use free-running Timer1 (or
Timer3), clocked by the internal oscillator block and an
external event with a known period (i.e., AC power
frequency). The time of the first event is captured in the
CCPRxH:CCPRxL registers and is recorded for use
later. When the second event causes a capture, the
time of the first event is subtracted from the time of the
second event. Since the period of the external event is
known, the time difference between events can be
calculated.
If the measured time is much greater than the
calculated time, the internal oscillator block is running
too fast. To compensate, decrement the OSCTUNE
register. If the measured time is much less than the
calculated time, the internal oscillator block is running
too slow. To compensate, increment the OSCTUNE
register.
Compensating with the EUSART
Compensating with the Timers
Compensating with the CCP Module
in Capture Mode
 2010 Microchip Technology Inc.

Related parts for PIC18F86K90-I/PT