ATmega48 Atmel Corporation, ATmega48 Datasheet - Page 239

no-image

ATmega48

Manufacturer Part Number
ATmega48
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega48

Flash (kbytes)
4 Kbytes
Pin Count
32
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
23
Ext Interrupts
24
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
256
Self Program Memory
NO
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega48-10AU
Manufacturer:
FEVA
Quantity:
30 000
Part Number:
ATmega48-15AT
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega48-15AT1
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega48-15AT1
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega48-15AZ
Manufacturer:
ATMEL
Quantity:
3 500
Part Number:
ATmega48-15AZ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega48-15AZ
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega48-15AZV
Manufacturer:
MICROCHIP
Quantity:
3 100
Part Number:
ATmega48-15AZV
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega48-20AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega48-20AU
Manufacturer:
ATMEL
Quantity:
6 460
Part Number:
ATmega48-20AU
Manufacturer:
Atmel
Quantity:
1 300
Part Number:
ATmega48-20AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATmega48-20AU
Quantity:
2 500
22.9.5
22.9.6
2545T–AVR–05/11
TWAR – TWI (slave) address register
TWAMR – TWI (slave) address mask register
of a lost bus arbitration, no data is lost in the transition from Master to Slave. Handling of the
ACK bit is controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.
• Bits 7..0 – TWD: TWI data register
These eight bits constitute the next data byte to be transmitted, or the latest data byte received
on the 2-wire Serial Bus.
The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of
TWAR) to which the TWI will respond when programmed as a Slave Transmitter or Receiver,
and not needed in the Master modes. In multi master systems, TWAR must be set in masters
which can be addressed as Slaves by other Masters.
The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an
associated address comparator that looks for the slave address (or general call address if
enabled) in the received serial address. If a match is found, an interrupt request is generated.
• Bits 7..1 – TWA: TWI (slave) address register
These seven bits constitute the slave address of the TWI unit.
• Bit 0 – TWGCE: TWI general call recognition enable bit
If set, this bit enables the recognition of a General Call given over the 2-wire Serial Bus.
• Bits 7..1 – TWAM: TWI address mask
The TWAMR can be loaded with a 7-bit Salve Address mask. Each of the bits in TWAMR can
mask (disable) the corresponding address bits in the TWI Address Register (TWAR). If the mask
bit is set to one then the address match logic ignores the compare between the incoming
address bit and the corresponding bit in TWAR.
match logic in detail.
Bit
(0xBA)
Read/write
Initial value
Bit
(0xBD)
Read/write
Initial value
TWA6
R/W
R/W
7
0
7
1
TWA5
R/W
R/W
6
0
6
1
TWA4
R/W
R/W
5
0
5
1
TWAM[6:0]
TWA3
R/W
R/W
4
0
4
1
Figure 22-22 on page 240
TWA2
R/W
R/W
3
0
3
1
TWA1
R/W
R/W
ATmega48/88/168
2
0
2
1
TWA0
R/W
R/W
1
0
1
1
shown the address
TWGCE
R/W
R
0
0
0
0
TWAMR
TWAR
239

Related parts for ATmega48