MT9075B Mitel Networks Corporation, MT9075B Datasheet - Page 17

no-image

MT9075B

Manufacturer Part Number
MT9075B
Description
E1 Single Chip Transceiver
Manufacturer
Mitel Networks Corporation
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MT9075BL
Quantity:
5 510
Part Number:
MT9075BL
Manufacturer:
ZARLINK
Quantity:
490
Part Number:
MT9075BL
Manufacturer:
ZARLINK
Quantity:
20 000
Part Number:
MT9075BL1
Manufacturer:
ZARLINK
Quantity:
5
Part Number:
MT9075BP
Manufacturer:
MT
Quantity:
1 000
Part Number:
MT9075BP
Manufacturer:
MITEL
Quantity:
199
Part Number:
MT9075BP
Manufacturer:
ZARLINK
Quantity:
20 000
Preliminary Information
respectively. The following features are common to
both HDLC controllers:
HDLC0 Functions
When connected to the Data Link (DL) HDLC0 will
operate at a selected bit rate of 4, 8, 12, 16 or 20
kbits/sec. HDLC0 can be selected by setting the
control bit HDLC0 (bit 7) to one in page 01H, address
14H. When this bit is zero all interrupts from HDLC0
are masked. For more information refer to following
sections.
HDLC1 Functions
This controller may be connected to time slot 16
under Common Channel Signalling (CCS) mode. It
should be noted that the AIS16S function (page 03H,
address 19H) will always be active and the TAIS16
function (page 01H, address 16H) will override all
other transmit signalling.
HDLC1 can be selected by setting the control bit
HDLC1 (bit 6) to one in page 01H, address 14H.
When this bit is zero all interrupts from HDLC1 are
masked.
HDLC Overview
The HDLC handles the bit oriented packetized data
transmission as per X.25 level two protocol defined
by CCITT. It provides flag and abort sequence
generation
deletion,
generation and detection. A single byte, dual byte
and all call address in the received frame can be
recognized. Access to the receive FCS and inhibiting
of transmit FCS for terminal adaptation are also
provided. Each HDLC controller has a 128 byte deep
FIFO associated with it. The status and interrupt
flags are programmable for FIFO depths that can
Independent transmit and receive FIFO's;
Receive FIFO maskable interrupts for nearly
full (programmable interrupt levels) and
overflow conditions;
Transmit FIFO maskable interrupts for
nearly empty (programmable
levels) and underflow conditions;
Maskable interrupts for transmit end-of-
packet and receive end-of-packet;
Maskable interrupts for receive bad-frame
(includes frame abort);
Transmit end-of-packet and frame-abort
functions.
and
and
Frame
detection,
Check
zero
Sequence
insertion
interrupt
(FCS)
and
vary from 16 to 128 bytes in steps of 16 bytes. These
and other features are enabled through the HDLC
control registers on page 0BH and 0CH.
HDLC Frame Structure
A valid HDLC frame (also referred as “packet”)
begins with an opening flag, contains at least 16 bits
of data field, and ends with a 16 bit FCS followed by
a closing flag (Table 9).
All HDLC frames start and end with a unique flag
sequence
generates these flags and appends them to the
packet to be transmitted. The receiver searches the
incoming data stream for the flags on a bit-by-bit
basis to establish frame synchronization.
The data field usually consists of an address field,
control field and information field. The address field
consists of one or two bytes directly following the
opening flag. The control field consists of one byte
directly following the address field. The information
field immediately follows the control field and
consists of n bytes of data. The HDLC does not
distinguish between the control and information
fields and a packet does not need to contain an
information field to be valid.
The FCS field, which precedes the closing flag,
consists of two bytes. A cyclic redundancy check
utilizing
“X
transmitter the FCS is calculated on all bits of the
address and data field. The complement of the FCS
is transmitted, most significant bit first, in the FCS
field. The receiver calculates the FCS on the
incoming packet address, data and FCS field and
compares the result to “F0B8”. If no transmission
errors are detected and the packet between the flags
is at least 32 bits in length then the address and data
are entered into the receive FIFO minus the FCS
which is discarded.
Data Transparency (Zero Insertion/Deletion)
Transparency ensures that the contents of a data
packet do not imitate a flag, go-ahead, frame abort
or idle channel. The contents of a transmitted frame,
between the flags, is examined on a bit-by-bit basis
Flag (7EH)
01111110
16
One Byte
Opening
+X
12
+X
Table 9 - HDLC Frame Format
the
5
“01111110
+1” produces the 16-bit FCS. In the
n Bytes
Field
Data
n
CCITT
2
(7EH).
Two Bytes
standard
FCS
MT9075B
The
Flag (7EH)
01111110
One Byte
polynomial
transmitter
Closing
17

Related parts for MT9075B