LTC3826 Linear Technology, LTC3826 Datasheet - Page 14

no-image

LTC3826

Manufacturer Part Number
LTC3826
Description
2-Phase Synchronous Step-Down Controller
Manufacturer
Linear Technology
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LTC3826EG-1
Manufacturer:
Linear Technology
Quantity:
135
Part Number:
LTC3826EG-1
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LTC3826EG-1#TRPBF
Manufacturer:
SEMTECH
Quantity:
280
Part Number:
LTC3826EUH
Manufacturer:
Linear Technology
Quantity:
135
Part Number:
LTC3826EUH
Manufacturer:
LT
Quantity:
10 000
Part Number:
LTC3826EUH
Manufacturer:
LINEAR
Quantity:
20 000
Part Number:
LTC3826EUH#PBF
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LTC3826EUH#TRPBF
Manufacturer:
LT
Quantity:
501
Part Number:
LTC3826IG-1
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LTC3826IUH
Manufacturer:
LINEAR/凌特
Quantity:
20 000
www.datasheet4u.com
OPERATION
LTC3826
THEORY AND BENEFITS OF 2-PHASE OPERATION
Why the need for 2-phase operation? Up until the 2-phase
family, constant-frequency dual switching regulators
operated both channels in phase (i.e., single-phase
operation). This means that both switches turned on at
the same time, causing current pulses of up to twice the
amplitude of those for one regulator to be drawn from the
input capacitor and battery. These large amplitude current
pulses increased the total RMS current fl owing from the
input capacitor, requiring the use of more expensive input
capacitors and increasing both EMI and losses in the input
capacitor and battery.
With 2-phase operation, the two channels of the dual-
switching regulator are operated 180 degrees out of phase.
This effectively interleaves the current pulses drawn by the
14
Figure 1. Input Waveforms Comparing Single-Phase (a) and 2-Phase (b) Operation for Dual Switching Regulators
Converting 12V to 5V and 3.3V at 3A Each. The Reduced Input Ripple with the 2-Phase Regulator Allows
Less Expensive Input Capacitors, Reduces Shielding Requirements for EMI and Improves Effi ciency
(Refer to Functional Diagram)
I
IN(MEAS)
(a)
= 2.53A
RMS
3826 F01a
INPUT CURRENT
INPUT VOLTAGE
3.3V SWITCH
5V SWITCH
500mV/DIV
20V/DIV
20V/DIV
5A/DIV
switches, greatly reducing the overlap time where they add
together. The result is a signifi cant reduction in total RMS
input current, which in turn allows less expensive input
capacitors to be used, reduces shielding requirements for
EMI and improves real world operating effi ciency.
Figure 1 compares the input waveforms for a representa-
tive single-phase dual switching regulator to the LTC3826
2-phase dual switching regulator. An actual measure-
ment of the RMS input current under these conditions
shows that 2-phase operation dropped the input current
from 2.53A
reduction in itself, remember that the power losses are
proportional to I
is reduced by a factor of 2.66. The reduced input ripple
voltage also means less power is lost in the input power
RMS
I
RMS
IN(MEAS)
to 1.55A
2
, meaning that the actual power wasted
(b)
= 1.55A
RMS
RMS
. While this is an impressive
3826 F01b
3826fc

Related parts for LTC3826