LTC3826 Linear Technology, LTC3826 Datasheet - Page 25

no-image

LTC3826

Manufacturer Part Number
LTC3826
Description
2-Phase Synchronous Step-Down Controller
Manufacturer
Linear Technology
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LTC3826EG-1
Manufacturer:
Linear Technology
Quantity:
135
Part Number:
LTC3826EG-1
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LTC3826EG-1#TRPBF
Manufacturer:
SEMTECH
Quantity:
280
Part Number:
LTC3826EUH
Manufacturer:
Linear Technology
Quantity:
135
Part Number:
LTC3826EUH
Manufacturer:
LT
Quantity:
10 000
Part Number:
LTC3826EUH
Manufacturer:
LINEAR
Quantity:
20 000
Part Number:
LTC3826EUH#PBF
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LTC3826EUH#TRPBF
Manufacturer:
LT
Quantity:
501
Part Number:
LTC3826IG-1
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LTC3826IUH
Manufacturer:
LINEAR/凌特
Quantity:
20 000
www.datasheet4u.com
APPLICATIONS INFORMATION
4. Transition losses apply only to the topside MOSFET(s),
Other “hidden” losses such as copper trace and internal
battery resistances can account for an additional 5% to
10% effi ciency degradation in portable systems. It is very
important to include these “system” level losses during
the design phase. The internal battery and fuse resistance
losses can be minimized by making sure that C
equate charge storage and very low ESR at the switching
frequency. A 25W supply will typically require a minimum of
20μF to 40μF of capacitance having a maximum of 20mΩ to
50mΩ of ESR. The LTC3728L 2-phase architecture typically
halves this input capacitance requirement over competing
solutions. Other losses including Schottky conduction
losses during dead-time and inductor core losses generally
account for less than 2% total additional loss.
Checking Transient Response
The regulator loop response can be checked by looking at
the load current transient response. Switching regulators
take several cycles to respond to a step in DC (resistive)
load current. When a load step occurs, V
amount equal to ΔI
series resistance of C
discharge C
forces the regulator to adapt to the current change and
return V
ery time V
or ringing, which would indicate a stability problem.
OPTI-LOOP compensation allows the transient response
to be optimized over a wide range of output capacitance
and ESR values. The availability of the I
and become signifi cant only when operating at high
input voltages (typically 15V or greater). Transition
losses can be estimated from:
Transition Loss = (1.7) V
OUT
OUT
OUT
to its steady-state value. During this recov-
can be monitored for excessive overshoot
generating the feedback error signal that
LOAD
OUT
(ESR), where ESR is the effective
. ΔI
IN
LOAD
2 I
O(MAX)
also begins to charge or
C
RSS
OUT
TH
pin not only
f
shifts by an
IN
has ad-
allows optimization of control loop behavior but also pro-
vides a DC coupled and AC fi ltered closed loop response
test point. The DC step, rise time and settling at this test
point truly refl ects the closed loop response. Assuming a
predominantly second order system, phase margin and/or
damping factor can be estimated using the percentage of
overshoot seen at this pin. The bandwidth can also be
estimated by examining the rise time at the pin. The I
external components shown in Figure 13 circuit will provide
an adequate starting point for most applications.
The I
loop compensation. The values can be modifi ed slightly
(from 0.5 to 2 times their suggested values) to optimize
transient response once the fi nal PC layout is done and
the particular output capacitor type and value have been
determined. The output capacitors need to be selected
because the various types and values determine the loop
gain and phase. An output current pulse of 20% to 80%
of full-load current having a rise time of 1μs to 10μs will
produce output voltage and I
give a sense of the overall loop stability without break-
ing the feedback loop. Placing a power MOSFET directly
across the output capacitor and driving the gate with an
appropriate signal generator is a practical way to produce
a realistic load step condition. The initial output voltage
step resulting from the step change in output current may
not be within the bandwidth of the feedback loop, so this
signal cannot be used to determine phase margin. This
is why it is better to look at the I
the feedback loop and is the fi ltered and compensated
control loop response. The gain of the loop will be in-
creased by increasing R
will be increased by decreasing C
the same factor that C
will be kept the same, thereby keeping the phase shift the
TH
series R
C
-C
C
C
fi lter sets the dominant pole-zero
is decreased, the zero frequency
C
and the bandwidth of the loop
TH
TH
pin waveforms that will
C
. If R
pin signal which is in
LTC3826
C
is increased by
25
3826fc
TH

Related parts for LTC3826