LTC3826 Linear Technology, LTC3826 Datasheet - Page 29

no-image

LTC3826

Manufacturer Part Number
LTC3826
Description
2-Phase Synchronous Step-Down Controller
Manufacturer
Linear Technology
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LTC3826EG-1
Manufacturer:
Linear Technology
Quantity:
135
Part Number:
LTC3826EG-1
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LTC3826EG-1#TRPBF
Manufacturer:
SEMTECH
Quantity:
280
Part Number:
LTC3826EUH
Manufacturer:
Linear Technology
Quantity:
135
Part Number:
LTC3826EUH
Manufacturer:
LT
Quantity:
10 000
Part Number:
LTC3826EUH
Manufacturer:
LINEAR
Quantity:
20 000
Part Number:
LTC3826EUH#PBF
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LTC3826EUH#TRPBF
Manufacturer:
LT
Quantity:
501
Part Number:
LTC3826IG-1
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LTC3826IUH
Manufacturer:
LINEAR/凌特
Quantity:
20 000
www.datasheet4u.com
APPLICATIONS INFORMATION
3. Do the LTC3826 V
4. Are the SENSE
5. Is the INTV
6. Keep the switching nodes (SW1, SW2), top gate nodes
7. Use a modifi ed “star ground” technique: a low imped-
the (+) terminals of C
connected between the (+) terminal of C
ground. The feedback resistor connections should not
be along the high current input feeds from the input
capacitor(s).
minimum PC trace spacing? The fi lter capacitor between
SENSE
to the IC. Ensure accurate current sensing with Kelvin
connections at the SENSE resistor.
the IC, between the INTV
This capacitor carries the MOSFET drivers current peaks.
An additional 1μF ceramic capacitor placed immediately
next to the INTV
noise performance substantially.
(TG1, TG2), and boost nodes (BOOST1, BOOST2) away
from sensitive small-signal nodes, especially from
the opposites channel’s voltage and current sensing
feedback pins. All of these nodes have very large and
fast moving signals and therefore should be kept on
the “output side” of the LTC3826 and occupy minimum
PC trace area.
ance, large copper area central grounding point on
the same side of the PC board as the input and output
capacitors with tie-ins for the bottom of the INTV
decoupling capacitor, the bottom of the voltage feedback
resistive divider and the SGND pin of the IC.
+
and SENSE
CC
decoupling capacitor connected close to
and SENSE
CC
FB
and PGND pins can help improve
pins’ resistive dividers connect to
OUT
should be as close as possible
CC
? The resistive divider must be
and the power ground pins?
+
leads routed together with
OUT
and signal
CC
PC Board Layout Debugging
Start with one controller on at a time. It is helpful to use
a DC-50MHz current probe to monitor the current in the
inductor while testing the circuit. Monitor the output
switching node (SW pin) to synchronize the oscilloscope
to the internal oscillator and probe the actual output voltage
as well. Check for proper performance over the operating
voltage and current range expected in the application. The
frequency of operation should be maintained over the input
voltage range down to dropout and until the output load
drops below the low current operation threshold—typi-
cally 10% of the maximum designed current level in Burst
Mode operation.
The duty cycle percentage should be maintained from cycle
to cycle in a well-designed, low noise PCB implementation.
Variation in the duty cycle at a subharmonic rate can sug-
gest noise pickup at the current or voltage sensing inputs
or inadequate loop compensation. Overcompensation of
the loop can be used to tame a poor PC layout if regula-
tor bandwidth optimization is not required. Only after
each controller is checked for its individual performance
should both controllers be turned on at the same time.
A particularly diffi cult region of operation is when one
controller channel is nearing its current comparator trip
point when the other channel is turning on its top MOSFET.
This occurs around 50% duty cycle on either channel due
to the phasing of the internal clocks and may cause minor
duty cycle jitter.
Reduce V
the regulator in dropout. Check the operation of the un-
der-voltage lockout circuit by further lowering V
monitoring the outputs to verify operation.
IN
from its nominal level to verify operation of
LTC3826
IN
29
while
3826fc

Related parts for LTC3826