MAX15034BEVKIT+ Maxim Integrated Products, MAX15034BEVKIT+ Datasheet - Page 9

no-image

MAX15034BEVKIT+

Manufacturer Part Number
MAX15034BEVKIT+
Description
KIT EVALUATION FOR MAX15034
Manufacturer
Maxim Integrated Products
Datasheets

Specifications of MAX15034BEVKIT+

Main Purpose
DC/DC, Step Down
Voltage - Input
5 ~ 28V
Regulator Topology
Buck
Board Type
Fully Populated
Utilized Ic / Part
MAX15034
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Current - Output
-
Voltage - Output
-
Power - Output
-
Frequency - Switching
-
Outputs And Type
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Configurable, Single-/Dual-Output, Synchronous
PIN
10
11
12
13
14
1
2
3
4
5
6
7
8
9
Buck Controller for High-Current Applications
AVGLIMIT
RT/CLKIN
EAOUT2
EAOUT1
NAME
AGND
MODE
CSN2
CSN1
CSP2
EAN2
EAN1
CSP1
CLP2
CLP1
_______________________________________________________________________________________
Current-Sense Differential Amplifier Negative Input for Output 2. Connect CSN2 to the negative terminal of
the sense resistor. The differential voltage between CSP2 and CSN2 is internally amplified by the current-
sense amplifier (A
Current-Sense Differential Amplifier Positive Input for Output 2. Connect CSP2 to the positive terminal of the
sense resistor. The differential voltage between CSP2 and CSN2 is internally amplified by the current-sense
amplifier (A
Voltage Error-Amplifier Output 2. Connect to an external gain-setting feedback resistor. The error-amplifier
gain determines the output voltage load regulation for adaptive voltage positioning. This output also serves
as the compensation network connection from EAOUT2 to EAN2. A resistive network results in a drooped
output-voltage-regulation characteristic. An integrator configuration results in very tight output-voltage
regulation (see the Adaptive Voltage Positioning section).
Voltage Error-Amplifier Inverting Input for Output 2. Connect a resistive divider from V
AGND to set the output voltage. A compensation network connects from EAOUT2 to EAN2. A resistive
network results in a drooped output-voltage-regulation characteristic. An integrator configuration results in
very tight output-voltage regulation (see the Adaptive Voltage Positioning section).
Current-Error Amplifier Output 2. Compensate the current loop by connecting an R-C network from CLP2 to
AGND.
Average Current-Limit Programming. Connect a resistor-divider between REG, AVGLIMIT, and AGND to set
the average current-limit value (see the Programming Average the Current Limit section).
External Clock Input or Internal Frequency-Setting Connection. Connect a resistor from RT/CLKIN to AGND
to set the switching frequency. Connect an external clock at RT/CLKIN for external frequency
synchronization.
Analog Ground
Mode Function Input. MODE selects between a single-output dual phase or a dual-output buck regulator.
When MODE is grounded, VEA1 and VEA2 connect to CEA1 and CEA2, respectively (see Figure 1) and the
device operates as a two-output, out-of-phase buck regulator. When MODE is connected to REG (logic
high), VEA2 is disconnected and VEA1 is routed to both CEA1 and CEA2.
Current-Error Amplifier Output 1. Compensate the current loop by connecting an R-C network from CLP1 to
AGND.
Voltage Error-Amplifier Inverting Input for Output 1. Connect a resistive divider from V
regulate the output voltage. A compensation network connects from EAOUT1 to EAN1. A resistive network
results in a drooped output-voltage-regulation characteristic. An integrator configuration results in very tight
output-voltage regulation (see the Adaptive Voltage Positioning section).
Voltage Error-Amplifier Output 1. Connect to an external gain-setting feedback resistor. The error-amplifier
gain determines the output-voltage-load regulation for adaptive voltage positioning. This output also serves
as the compensation network connection from EAOUT1 to EAN1. A resistive network results in a drooped
output-voltage-regulation characteristic. An integrator configuration results in very tight output-voltage
regulation (see the Adaptive Voltage Positioning section).
Current-Sense Differential Amplifier Positive Input for Output 1. Connect CSP1 to the positive terminal of the
sense resistor. The differential voltage between CSP1 and CSN1 is internally amplified by the current-sense
amplifier (A
Current-Sense Differential Amplifier Negative Input for Output 1. Connect CSN1 to the negative terminal of
the sense resistor. The differential voltage between CSP1 and CSN1 is internally amplified by the current-
sense amplifier (A
V(CS)
V(CS)
= 36V/V).
= 36V/V).
V(CS)
V(CS)
= 36V/V).
= 36V/V).
FUNCTION
Pin Description
OUT2
OUT1
to EAN2 to
to EAN1 to
9

Related parts for MAX15034BEVKIT+