PIC18F86K90-I/PT Microchip Technology, PIC18F86K90-I/PT Datasheet - Page 125

no-image

PIC18F86K90-I/PT

Manufacturer Part Number
PIC18F86K90-I/PT
Description
64kB Flash, 4kB RAM, 1kB EE, 16MIPS, NanoWatt XLP, LCD, 5V 80 TQFP 12x12x1mm TRA
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F86K90-I/PT

Core Processor
PIC
Core Size
8-Bit
Speed
64MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
69
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 24x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
80-TQFP
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F86K90-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F86K90-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
PIC18F86K90-I/PT
Quantity:
492
Part Number:
PIC18F86K90-I/PTRSL
Manufacturer:
Microchip Technology
Quantity:
10 000
9.0
9.1
All PIC18 devices include an 8 x 8 hardware multiplier
as part of the ALU. The multiplier performs an unsigned
operation and yields a 16-bit result that is stored in the
product register pair, PRODH:PRODL. The multiplier’s
operation does not affect any flags in the STATUS
register.
Making multiplication a hardware operation allows it to
be completed in a single instruction cycle. This has the
advantages of higher computational throughput and
reduced code size for multiplication algorithms and
allows PIC18 devices to be used in many applications
previously reserved for digital-signal processors. A
comparison of various hardware and software multiply
operations, along with the savings in memory and
execution time, is shown in Table 9-1.
9.2
Example 9-1 shows the instruction sequence for an 8 x 8
unsigned multiplication. Only one instruction is required
when one of the arguments is already loaded in the
WREG register.
Example 9-2 shows the sequence to do an 8 x 8 signed
multiplication. To account for the sign bits of the argu-
ments, each argument’s Most Significant bit (MSb) is
tested and the appropriate subtractions are done.
TABLE 9-1:
 2010 Microchip Technology Inc.
8 x 8 unsigned
16 x 16 signed
8 x 8 signed
unsigned
Routine
16 x 16
8 x 8 HARDWARE MULTIPLIER
Introduction
Operation
Without hardware multiply
Without hardware multiply
Without hardware multiply
Without hardware multiply
PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS
Hardware multiply
Hardware multiply
Hardware multiply
Hardware multiply
Multiply Method
Program
Memory
(Words)
13
33
21
28
52
35
1
6
Preliminary
Cycles
(Max)
242
254
69
91
28
40
1
6
PIC18F87K90 FAMILY
EXAMPLE 9-1:
EXAMPLE 9-2:
MOVF
MULWF
MOVF
MULWF
BTFSC
SUBWF
MOVF
BTFSC
SUBWF
@ 64 MHz
15.1 s
15.8 s
62.5 ns
375 ns
4.3 s
5.6 s
1.7 s
2.5 s
ARG1, W
ARG2
ARG1, W
ARG2
ARG2, SB
PRODH, F
ARG2, W
ARG1, SB
PRODH, F
@ 48 MHz
83.3 ns
20.1 s
21.2 s
500 ns
5.7 s
7.5 s
2.3 s
3.3 s
8 x 8 UNSIGNED
MULTIPLY ROUTINE
8 x 8 SIGNED MULTIPLY
ROUTINE
;
; ARG1 * ARG2 ->
; PRODH:PRODL
; ARG1 * ARG2 ->
; PRODH:PRODL
; Test Sign Bit
; PRODH = PRODH
;
; Test Sign Bit
; PRODH = PRODH
;
Time
@ 10 MHz
101.6 s
27.6 s
36.4 s
96.8 s
11.2 s
16.0 s
400 ns
2.4 s
DS39957B-page 125
- ARG1
- ARG2
@ 4 MHz
242 s
254 s
69 s
91 s
28 s
40 s
1 s
6 s

Related parts for PIC18F86K90-I/PT