AT90PWM216 Atmel Corporation, AT90PWM216 Datasheet - Page 192

no-image

AT90PWM216

Manufacturer Part Number
AT90PWM216
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of AT90PWM216

Flash (kbytes)
16 Kbytes
Pin Count
24
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
19
Ext Interrupts
4
Usb Speed
No
Usb Interface
No
Spi
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
125
Analog Comparators
2
Resistive Touch Screen
No
Dac Channels
1
Dac Resolution (bits)
10
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 105
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
12
Input Capture Channels
1
Pwm Channels
7
32khz Rtc
No
Calibrated Rc Oscillator
Yes
7710F–AVR–09/11
Before doing a re-initialization with changed baud rate or frame format, be sure that there are no
ongoing transmissions during the period the registers are changed. The TXC flag can be used to
check that the Transmitter has completed all transfers, and the RXC flag can be used to check
that there are no unread data in the receive buffer. Note that the TXC flag must be cleared
before each transmission (before UDR is written) if it is used for this purpose.
The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using polling
(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.
For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16
Registers.
Note:
More advanced initialization routines can be made that include frame format as parameters, dis-
able interrupts and so on. However, many applications use a fixed setting of the baud and
control registers, and for these types of applications the initialization code can be placed directly
in the main routine, or be combined with initialization code for other I/O modules.
Assembly Code Example
C Code Example
TABLE 2.
USART_Init:
void USART_Init( unsigned int baud )
{
}
; Set baud rate
sts
sts
; Set frame format: 8data, no parity & 2 stop bits
ldi
sts
; Enable receiver and transmitter
ldi
sts
ret
/* Set baud rate */
UBRRH = (unsigned char)(baud>>8);
UBRRL = (unsigned char)baud;
/* Set frame format: 8data, no parity & 2 stop bits */
UCSRC = (0<<UMSEL)|(0<<UPM0)|(1<<USBS)|(3<<UCSZ0);
/* Enable receiver and transmitter */
UCSRB = (1<<RXEN0)|(1<<TXEN0);
1. The example code assumes that the part specific header file is included.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.
UBRRH, r17
UBRRL, r16
r16, (0<<UMSEL)|(0<<UPM0)|(1<<USBS)|(3<<UCSZ0)
UCSRC,r16
r16, (1<<RXEN0)|(1<<TXEN0)
UCSRB,r16
(1)
(1)
AT90PWM216/316
192

Related parts for AT90PWM216