AT90PWM216 Atmel Corporation, AT90PWM216 Datasheet - Page 247

no-image

AT90PWM216

Manufacturer Part Number
AT90PWM216
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of AT90PWM216

Flash (kbytes)
16 Kbytes
Pin Count
24
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
19
Ext Interrupts
4
Usb Speed
No
Usb Interface
No
Spi
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
125
Analog Comparators
2
Resistive Touch Screen
No
Dac Channels
1
Dac Resolution (bits)
10
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 105
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
12
Input Capture Channels
1
Pwm Channels
7
32khz Rtc
No
Calibrated Rc Oscillator
Yes
21.7
7710F–AVR–09/11
ADC Conversion Result
Figure 21-13. Differential Non-linearity (DNL)
After the conversion is complete (ADIF is high), the conversion result can be found in the ADC
Result Registers (ADCL, ADCH).
For single ended conversion, the result is:
where V
Table 21-3 on page 250
0x3FF represents the selected reference voltage.
If differential channels are used, the result is:
where V
GAIN the selected gain factor and V
in two’s complement form, from 0x200 (-512d) through 0x1FF (+511d). Note that if the user
wants to perform a quick polarity check of the result, it is sufficient to read the MSB of the result
(ADC9 in ADCH). If the bit is one, the result is negative, and if this bit is zero, the result is posi-
tive.
Table 82 shows the resulting output codes if the differential input channel pair (ADCn - ADCm) is
selected with a reference voltage of V
• Quantization Error: Due to the quantization of the input voltage into a finite number of codes,
• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to
a range of input voltages (1 LSB wide) will code to the same value. Always ± 0.5 LSB.
an ideal transition for any code. This is the compound effect of offset, gain error, differential
error, non-linearity, and quantization error. Ideal value: ± 0.5 LSB.
Figure 21-14
IN
POS
is the voltage on the selected input pin and V
is the voltage on the positive input pin, V
Output Code
shows the decoding of the differential input range.
0x000
0x3FF
and
0
Table 21-4 on page
1 LSB
ADC
REF
REF
ADC
=
the selected voltage reference. The result is presented
.
(
----------------------------------------------------------------------- -
V
=
POS
V
--------------------------
IN
V
REF
250). 0x000 represents analog ground, and
V
1023
NEG
NEG
V
REF
REF
) GAIN 512
the voltage on the negative input pin,
the selected voltage reference (see
AT90PWM216/316
V
REF
Input Voltage
247

Related parts for AT90PWM216