ATTINY20-EK1 Atmel, ATTINY20-EK1 Datasheet - Page 133

no-image

ATTINY20-EK1

Manufacturer Part Number
ATTINY20-EK1
Description
KIT EVAL TOUCH ATTINY20
Manufacturer
Atmel
Datasheet

Specifications of ATTINY20-EK1

Sensor Type
*
Sensing Range
*
Interface
*
Sensitivity
*
Voltage - Supply
*
Embedded
*
Utilized Ic / Part
*
Silicon Manufacturer
Atmel
Core Architecture
AVR
Core Sub-architecture
TinyAVR
Kit Contents
Board
Svhc
No SVHC (15-Dec-2010)
Mcu Supported Families
ATtiny20
Tool / Board Applications
Microcontroller
Rohs Compliant
Yes
Tool Type
Development Kit
Cpu Core
AVR 8
Data Bus Width
8 bit
Processor To Be Evaluated
ATtiny20
Interface Type
Touch
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
16.3
16.3.1
16.3.2
8235B–AVR–04/11
SS Pin Functionality
Slave Mode
Master Mode
Note:
When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive, which
means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin
is driven high.
The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous
with the master clock generator. When the SS pin is driven high, the SPI slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.
When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.
If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.
If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin
is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin
defined as an input, the SPI system interprets this as another master selecting the SPI as a
slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:
C Code Example
void SPI_SlaveInit(void)
{
}
char SPI_SlaveReceive(void)
{
}
/* Set MISO output, all others input */
DDR_SPI = (1<<DD_MISO);
/* Enable SPI */
SPCR = (1<<SPE);
/* Wait for reception complete */
while(!(SPSR & (1<<SPIF)))
/* Return Data Register */
return SPDR;
See ”Code Examples” on page 6.
;
ATtiny20
133

Related parts for ATTINY20-EK1