PIC16F630-I/SL Microchip Technology, PIC16F630-I/SL Datasheet - Page 19

IC MCU FLASH 1KX14 EEPROM 14SOIC

PIC16F630-I/SL

Manufacturer Part Number
PIC16F630-I/SL
Description
IC MCU FLASH 1KX14 EEPROM 14SOIC
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F630-I/SL

Program Memory Type
FLASH
Program Memory Size
1.75KB (1K x 14)
Package / Case
14-SOIC (3.9mm Width), 14-SOL
Core Processor
PIC
Core Size
8-Bit
Speed
20MHz
Peripherals
Brown-out Detect/Reset, POR, WDT
Number Of I /o
12
Eeprom Size
128 x 8
Ram Size
64 x 8
Voltage - Supply (vcc/vdd)
2 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC16F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
64 B
Interface Type
RS- 232/USB
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
12
Number Of Timers
2
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, DM163014, DM164120-4
Minimum Operating Temperature
- 40 C
Package
14SOIC N
Device Core
PIC
Family Name
PIC16
Maximum Speed
20 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Data Converters
-
Connectivity
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F630-I/SL
Manufacturer:
TriQuint
Quantity:
1 200
Part Number:
PIC16F630-I/SL
Manufacturer:
MICROCHI
Quantity:
1 743
Part Number:
PIC16F630-I/SL
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC16F630-I/SL
0
Company:
Part Number:
PIC16F630-I/SL
Quantity:
219
Company:
Part Number:
PIC16F630-I/SL
Quantity:
5 700
Company:
Part Number:
PIC16F630-I/SL
Quantity:
21
2.3
The program counter (PC) is 13-bits wide. The low byte
comes from the PCL register, which is a readable and
writable register. The high byte (PC<12:8>) is not
directly readable or writable and comes from PCLATH.
On any Reset, the PC is cleared. Figure 2-3 shows the
two situations for the loading of the PC. The upper
example in Figure 2-3 shows how the PC is loaded on
a write to PCL (PCLATH<4:0>  PCH). The lower
example in Figure 2-3 shows how the PC is loaded
during a CALL or GOTO instruction (PCLATH<4:3> 
PCH).
FIGURE 2-3:
2.3.1
A computed GOTO is accomplished by adding an offset
to the program counter (ADDWF PCL). When perform-
ing a table read using a computed GOTO method, care
should be exercised if the table location crosses a PCL
memory boundary (each 256-byte block). Refer to the
Application Note “Implementing a Table Read"
(AN556).
 2010 Microchip Technology Inc.
PC
PC
12
12 11 10
2
PCL and PCLATH
5
PCH
PCLATH<4:3>
PCH
COMPUTED GOTO
PCLATH
PCLATH<4:0>
8
PCLATH
8
7
7
LOADING OF PC IN
DIFFERENT SITUATIONS
PCL
PCL
11
8
0
0
Instruction with
PCL as
Destination
ALU Result
GOTO, CALL
Opcode <10:0>
2.3.2
The PIC16F630/676 family has an 8-level x 13-bit wide
hardware stack (see Figure 2-1). The stack space is
not part of either program or data space and the Stack
Pointer is not readable or writable. The PC is PUSHed
onto the stack when a CALL instruction is executed or
an interrupt causes a branch. The stack is POPed in
the event of a RETURN,
instruction execution. PCLATH is not affected by a
PUSH or POP operation.
The stack operates as a circular buffer. This means that
after the stack has been PUSHed eight times, the ninth
push overwrites the value that was stored from the first
push. The tenth push overwrites the second push (and
so on).
Note 1: There are no Status bits to indicate Stack
2: There are no instructions/mnemonics
STACK
Overflow or Stack Underflow conditions.
called PUSH or POP. These are actions
that occur from the execution of the
CALL, RETURN, RETLW and RETFIE
instructions or the vectoring to an
interrupt address.
PIC16F630/676
RETLW or a RETFIE
DS40039F-page 19

Related parts for PIC16F630-I/SL