PIC16F627A-I/SO Microchip Technology, PIC16F627A-I/SO Datasheet - Page 11

IC MCU FLASH 1KX14 EEPROM 18SOIC

PIC16F627A-I/SO

Manufacturer Part Number
PIC16F627A-I/SO
Description
IC MCU FLASH 1KX14 EEPROM 18SOIC
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F627A-I/SO

Program Memory Type
FLASH
Program Memory Size
1.75KB (1K x 14)
Package / Case
18-SOIC (7.5mm Width)
Core Processor
PIC
Core Size
8-Bit
Speed
20MHz
Connectivity
UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
16
Eeprom Size
128 x 8
Ram Size
224 x 8
Voltage - Supply (vcc/vdd)
3 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC16F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
224 B
Interface Type
SCI/USART
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
16
Number Of Timers
3
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, DM163014, DM164120-4
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT18SO-1 - SOCKET TRANSITION 18SOIC 300MILI3DBF648 - BOARD DAUGHTER ICEPIC3AC162053 - HEADER INTERFACE ICD,ICD2 18DIPAC164010 - MODULE SKT PROMATEII DIP/SOIC
Data Converters
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F627A-I/SO
Manufacturer:
ST
Quantity:
2 400
Part Number:
PIC16F627A-I/SO
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC16F627A-I/SO
Quantity:
5 592
Part Number:
PIC16F627A-I/SO
0
3.0
The high performance of the PIC16F627A/628A/648A
family can be attributed to a number of architectural
features commonly found in RISC microprocessors. To
begin with, the PIC16F627A/628A/648A uses a
Harvard architecture, in which program and data are
accessed from separate memories using separate
busses. This improves bandwidth over traditional Von
Neumann architecture where program and data are
fetched from the same memory. Separating program
and data memory further allows instructions to be sized
differently than 8-bit wide data word. Instruction
opcodes are 14-bits wide making it possible to have all
single word instructions. A 14-bit wide program mem-
ory access bus fetches a 14-bit instruction in a single
cycle. A two-stage pipeline overlaps fetch and execu-
tion of instructions. Consequently, all instructions (35)
execute in a single-cycle (200 ns @ 20 MHz) except for
program branches.
Table 3-1 lists device memory sizes (Flash, Data and
EEPROM).
TABLE 3-1:
The PIC16F627A/628A/648A can directly or indirectly
address its register files or data memory. All Special
Function Registers (SFR), including the program
counter, are mapped in the data memory. The
PIC16F627A/628A/648A have an orthogonal (symmet-
rical) instruction set that makes it possible to carry out
any operation, on any register, using any Addressing
mode. This symmetrical nature and lack of ‘special
optimal situations’ make programming with the
PIC16F627A/628A/648A
addition, the learning curve is reduced significantly.
The PIC16F627A/628A/648A devices contain an 8-bit
ALU and working register. The ALU is a general
purpose arithmetic unit. It performs arithmetic and
Boolean functions between data in the working register
and any register file.
 2004 Microchip Technology Inc.
PIC16F627A
PIC16F628A
PIC16F648A
PIC16LF627A
PIC16LF628A
PIC16LF648A
Device
ARCHITECTURAL OVERVIEW
DEVICE MEMORY LIST
1024 x 14
2048 x 14
4096 x 14
1024 x 14
2048 x 14
4096 x 14
Program
Flash
simple
Memory
224 x 8
224 x 8
256 x 8
224 x 8
224 x 8
256 x 8
RAM
Data
yet
efficient.
EEPROM
128 x 8
128 x 8
256 x 8
128 x 8
128 x 8
256 x 8
Data
Preliminary
In
PIC16F627A/628A/648A
The ALU is 8-bit wide and capable of addition,
subtraction, shift and logical operations. Unless
otherwise mentioned, arithmetic operations are two's
complement in nature. In two-operand instructions,
typically one operand is the working register
(W register). The other operand is a file register or an
immediate constant. In single operand instructions, the
operand is either the W register or a file register.
The W register is an 8-bit working register used for ALU
operations. It is not an addressable register.
Depending on the instruction executed, the ALU may
affect the values of the Carry (C), Digit Carry (DC), and
Zero (Z) bits in the Status Register. The C and DC bits
operate as a Borrow and Digit Borrow out bit,
respectively, bit in subtraction. See the SUBLW and
SUBWF instructions for examples.
A simplified block diagram is shown in Figure 3-1, and
a description of the device pins in Table 3-2.
Two types of data memory are provided on the
PIC16F627A/628A/648A
EEPROM data memory is provided for long term stor-
age of data such as calibration values, look up table
data, and any other data which may require periodic
updating in the field. These data are not lost when
power is removed. The other data memory provided is
regular RAM data memory. Regular RAM data memory
is provided for temporary storage of data during normal
operation. Data are lost when power is removed.
devices.
DS40044B-page 9
Nonvolatile

Related parts for PIC16F627A-I/SO