ATMEGA8535L-8JU Atmel, ATMEGA8535L-8JU Datasheet - Page 133

MCU AVR 8K ISP FLASH MEM 44-PLCC

ATMEGA8535L-8JU

Manufacturer Part Number
ATMEGA8535L-8JU
Description
MCU AVR 8K ISP FLASH MEM 44-PLCC
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA8535L-8JU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
8KB (4K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-PLCC
Processor Series
ATMEGA8x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
8MHz
Total Internal Ram Size
512Byte
# I/os (max)
32
Number Of Timers - General Purpose
3
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
44
Package Type
PLCC
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRISP2 - PROGRAMMER AVR IN SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA8535L-8JU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA8535L-8JUR
Manufacturer:
Atmel
Quantity:
10 000
Timer/Counter Interrupt Mask
Register – TIMSK
2502K–AVR–10/06
• Bit 7 – OCIE2: Timer/Counter2 Output Compare Match Interrupt Enable
When the OCIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match interrupt is enabled. The corresponding interrupt is
executed if a Compare Match in Timer/Counter2 occurs (i.e., when the OCF2 bit is set in
the Timer/Counter Interrupt Flag Register – TIFR).
• Bit 6 – TOIE2: Timer/Counter2 Overflow Interrupt Enable
When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if
an overflow in Timer/Counter2 occurs (i.e., when the TOV2 bit is set in the
Timer/Counter Interrupt Flag Register – TIFR).
Bit
Read/Write
Initial Value
down or Standby mode due to unstable clock signal upon start-up, no matter
whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.
Description of wake-up from Power-save or Extended Standby mode when the timer
is clocked asynchronously: When the interrupt condition is met, the wake up
process is started on the following cycle of the timer clock, that is, the timer is
always advanced by at least one before the processor can read the counter value.
After wake-up, the MCU is halted for four cycles, it executes the interrupt routine,
and resumes execution from the instruction following SLEEP.
Reading of the TCNT2 Register shortly after wake-up from Power-save may give an
incorrect result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading
TCNT2 must be done through a register synchronized to the internal I/O clock
domain. Synchronization takes place for every rising TOSC1 edge. When waking up
from Power-save mode, and the I/O clock (clk
read as the previous value (before entering sleep) until the next rising TOSC1 edge.
The phase of the TOSC clock after waking up from Power-save mode is essentially
unpredictable, as it depends on the wake-up time. The recommended procedure for
reading TCNT2 is thus as follows:
1. Write any value to either of the registers OCR2 or TCCR2.
2. Wait for the corresponding Update Busy Flag to be cleared.
3. Read TCNT2.
During asynchronous operation, the synchronization of the interrupt flags for the
asynchronous timer takes three processor cycles plus one timer cycle. The timer is
therefore advanced by at least one before the processor can read the timer value
causing the setting of the Interrupt Flag. The output compare pin is changed on the
timer clock and is not synchronized to the processor clock.
OCIE2
R/W
7
0
TOIE2
R/W
6
0
TICIE1
R/W
5
0
OCIE1A
R/W
4
0
OCIE1B
R/W
3
0
I/O
) again becomes active, TCNT2 will
TOIE1
R/W
ATmega8535(L)
2
0
OCIE0
R/W
1
0
TOIE0
R/W
0
0
TIMSK
133

Related parts for ATMEGA8535L-8JU