ATA6616-P3PW Atmel, ATA6616-P3PW Datasheet - Page 153

no-image

ATA6616-P3PW

Manufacturer Part Number
ATA6616-P3PW
Description
TXRX MULTICHIP MOD LIN SIP 38QFN
Manufacturer
Atmel
Series
AVR® ATA66 LIN-SBCr
Datasheet

Specifications of ATA6616-P3PW

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, LIN, SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o
16
Program Memory Size
8KB (8K x 8)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 11x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
38-VQFN
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
4.13.9.5
9132D–AUTO–12/10
Phase and Frequency Correct PWM Mode
In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OC1A/B pins. Setting the COM1A/B1:0 bits to two will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COM1A/B1:0 to three (See
page
the port pin is set as output (DDR_OC1A/B) and OC1A/Bi is set. The PWM waveform is gener-
ated by setting (or clearing) the OC1A/B Register at the compare match between OCR1A/B
and TCNT1 when the counter increments, and clearing (or setting) the OC1A/B Register at
compare match between OCR1A/B and TCNT1 when the counter decrements. The PWM fre-
quency for the output when using phase correct PWM can be calculated by the following
equation:
The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).
The extreme values for the OCR1A/B Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCR1A/B is set equal to BOT-
TOM the output will be continuously low and if set equal to TOP the output will be continuously
high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic
values.
The phase and frequency correct Pulse Width Modulation, or phase and frequency correct
PWM mode (WGM13:0 = 8 or 9) provides a high resolution phase and frequency correct PWM
waveform generation option. The phase and frequency correct PWM mode is, like the phase
correct PWM mode, based on a dual-slope operation. The counter counts repeatedly from
BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output
mode, the Output Compare (OC1A/B) is cleared on the compare match between TCNT1 and
OCR1A/B while upcounting, and set on the compare match while downcounting. In inverting
Compare Output mode, the operation is inverted. The dual-slope operation gives a lower max-
imum operation frequency compared to the single-slope operation. However, due to the
symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.
The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCR1A/B Register is updated by the OCR1A/B Buffer Register, (see
ure 4-52
The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003),
and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in
bits can be calculated using the following equation:
f
R
OCnxPCPWM
PFCPWM
158). The actual OC1A/B value will only be visible on the port pin if the data direction for
and
=
=
log TOP
---------------------------------- -
Figure
--------------------------------- -
2
log 2
f
N
clk_I/O
+
4-53).
TOP
1
Atmel ATA6616/ATA6617
Table on
Fig-
153

Related parts for ATA6616-P3PW