PIC18F65K22-I/MRRSL Microchip Technology, PIC18F65K22-I/MRRSL Datasheet - Page 389

MCU PIC 32K FLASH MEM XLP 64QFN

PIC18F65K22-I/MRRSL

Manufacturer Part Number
PIC18F65K22-I/MRRSL
Description
MCU PIC 32K FLASH MEM XLP 64QFN
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F65K22-I/MRRSL

Core Size
8-Bit
Program Memory Size
32KB (16K x 16)
Core Processor
PIC
Speed
64MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number Of I /o
53
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 16x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VFQFN, Exposed Pad
Controller Family/series
PIC18
No. Of I/o's
53
Eeprom Memory Size
1KB
Ram Memory Size
2KB
Cpu Speed
64MHz
No. Of Timers
8
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
I2C, SPI
Maximum Clock Frequency
64 MHz
Number Of Programmable I/os
53
Number Of Timers
8
Operating Supply Voltage
1.8 V to 5.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Minimum Operating Temperature
- 40 C
On-chip Adc
12 bit, 16 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
The CTMU current source may be trimmed with the
trim bits in CTMUICON using an iterative process to get
the exact current desired. Alternatively, the nominal
value without adjustment may be used. That value may
be stored by software, for use in all subsequent
capacitive or time measurements.
To calculate the value for R
must be chosen. Then, the resistance can be
calculated.
For example, if the A/D Converter reference voltage is
3.3V, use 70% of full scale (or 2.31V) as the desired
approximate voltage to be read by the A/D Converter. If
the range of the CTMU current source is selected to be
0.55  A, the resistor value needed is calculated as
R
if the current source is chosen to be 5.5  A, R
be 420,000 Ω, and 42,000 Ω if the current source is set
to 55  A.
FIGURE 27-2:
 2010 Microchip Technology Inc.
CAL
= 2.31V/0.55 A , for a value of 4.2 M Ω . Similarly,
ANx
R
CAL
CTMU CURRENT SOURCE
CALIBRATION CIRCUIT
Current Source
MUX
PIC18F87K22
CAL
A/D Converter
, the nominal current
A/D
A/D
Trigger
CTMU
CAL
would
Preliminary
PIC18F87K22 FAMILY
A value of 70% of full-scale voltage is chosen to make
sure that the A/D Converter was in a range that is well
above the noise floor. If an exact current is chosen to
incorporate the trimming bits from CTMUICON, the
resistor value of R
ingly. R
resistor values. R
available, in light of the precision needed for the circuit
that the CTMU will be measuring. A recommended
minimum would be 0.1% tolerance.
The following examples show a typical method for
performing a CTMU current calibration.
• Example 27-1 demonstrates how to initialize the
• Example 27-2 demonstrates one method for the
A/D Converter and the CTMU.
This routine is typical for applications using both
modules.
actual calibration routine.
This method manually triggers the A/D Converter to
demonstrate the entire step-wise process. It is also
possible to automatically trigger the conversion by
setting the CTMU’s CTTRIG bit (CTMUCONH<0>).
CAL
also may be adjusted to allow for available
CAL
CAL
should be of the highest precision
may need to be adjusted accord-
DS39960B-page 389

Related parts for PIC18F65K22-I/MRRSL