PIC18F65K22-I/MRRSL Microchip Technology, PIC18F65K22-I/MRRSL Datasheet - Page 68

MCU PIC 32K FLASH MEM XLP 64QFN

PIC18F65K22-I/MRRSL

Manufacturer Part Number
PIC18F65K22-I/MRRSL
Description
MCU PIC 32K FLASH MEM XLP 64QFN
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F65K22-I/MRRSL

Core Size
8-Bit
Program Memory Size
32KB (16K x 16)
Core Processor
PIC
Speed
64MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number Of I /o
53
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 16x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VFQFN, Exposed Pad
Controller Family/series
PIC18
No. Of I/o's
53
Eeprom Memory Size
1KB
Ram Memory Size
2KB
Cpu Speed
64MHz
No. Of Timers
8
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
I2C, SPI
Maximum Clock Frequency
64 MHz
Number Of Programmable I/os
53
Number Of Timers
8
Operating Supply Voltage
1.8 V to 5.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Minimum Operating Temperature
- 40 C
On-chip Adc
12 bit, 16 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
PIC18F87K22 FAMILY
4.7
The Ultra Low-Power Wake-up (ULPWU) on pin RA0
allows a slow falling voltage to generate an interrupt
without excess current consumption.
To use this feature:
1.
2.
3.
4.
5.
When the voltage on RA0 drops below V
wakes up and executes the next instruction.
This feature provides a low-power technique for
periodically waking up the device from Sleep mode.
The time-out is dependent on the discharge time of the
RC circuit on RA0.
When the ULPWU module wakes the device from
Sleep mode, the ULPLVL bit (WDTCON<5>) is set.
Software can check this bit upon wake-up to determine
the wake-up source.
See Example 4-1 for initializing the ULPWU module.
EXAMPLE 4-1:
DS39960B-page 68
TRISAbits.TRISA0 = 0;
PORTAbits.RA0 = 1;
for(i = 0; i < 10000; i++) Nop();
TRISAbits.TRISA0 = 1;
WDTCONbits.ULPEN = 1;
WDTCONbits.ULPSINK = 1;
OSCCONbits.IDLEN = 0;
Sleep();
Charge the capacitor on RA0 by configuring the
RA0 pin to an output and setting it to ‘1’.
Stop charging the capacitor by configuring RA0
as an input.
Discharge the capacitor by setting the ULPEN
and ULPSINK bits in the WDTCON register.
Configure Sleep mode.
Enter Sleep mode.
Ultra Low-Power Wake-up
//***************************
//Charge the capacitor on RA0
//***************************
//*****************************
//Stop Charging the capacitor
//on RA0
//*****************************
//*****************************
//Enable the Ultra Low Power
//Wakeup module and allow
//capacitor discharge
//*****************************
//For Sleep
//Enter Sleep Mode
//
//for sleep, execution will
//resume here
ULTRA LOW-POWER
WAKE-UP INITIALIZATION
IL
, the device
Preliminary
A series resistor, between RA0 and the external capac-
itor, provides overcurrent protection for the RA0/AN0/
ULPWU pin and enables software calibration of the
time-out (see Figure 4-9).
FIGURE 4-9:
A timer can be used to measure the charge time and
discharge time of the capacitor. The charge time can
then be adjusted to provide the desired delay in Sleep.
This technique compensates for the affects of temper-
ature, voltage and component accuracy. The peripheral
can also be configured as a simple Programmable
Low-Voltage Detect (LVD) or temperature sensor.
Note:
RA0/AN0/ULPWU
For more information, see AN879, “Using
the Microchip Ultra Low-Power Wake-up
Module” (DS00879).
ULTRA LOW-POWER
WAKE-UP INITIALIZATION
 2010 Microchip Technology Inc.

Related parts for PIC18F65K22-I/MRRSL