KDC5512-50EVALZ Intersil, KDC5512-50EVALZ Datasheet - Page 28

no-image

KDC5512-50EVALZ

Manufacturer Part Number
KDC5512-50EVALZ
Description
DAUGHTER CARD FOR KDC5512
Manufacturer
Intersil
Datasheet

Specifications of KDC5512-50EVALZ

Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
KDC5512-50EVALZ
Manufacturer:
Intersil
Quantity:
4
Clock Input Considerations
Use matched transmission lines to the transformer inputs for
the analog input and clock signals. Locate transformers and
terminations as close to the chip as possible.
Exposed Paddle
The exposed paddle must be electrically connected to analog
ground (AVSS) and should be connected to a large copper
plane using numerous vias for optimal thermal performance.
Bypass and Filtering
Bulk capacitors should have low equivalent series
resistance. Tantalum is a good choice. For best
performance, keep ceramic bypass capacitors very close to
device pins. Longer traces will increase inductance, resulting
in diminished dynamic performance and accuracy. Make
sure that connections to ground are direct and low
impedance. Avoid forming ground loops.
LVDS Outputs
Output traces and connections must be designed for 50Ω
(100Ω differential) characteristic impedance. Keep traces
direct and minimize bends where possible. Avoid crossing
ground and power-plane breaks with signal traces.
LVCMOS Outputs
Output traces and connections must be designed for 50Ω
characteristic impedance.
Unused Inputs
Standard logic inputs (RESETN, CSB, SCLK, SDIO, SDO)
which will not be operated do not require connection to
ensure optimal ADC performance. These inputs can be left
floating if they are not used. Tri-level inputs (NAPSLP,
OUTMODE, OUTFMT, CLKDIV) accept a floating input as a
valid state, and therefore should be biased according to the
desired functionality.
Definitions
Analog Input Bandwidth is the analog input frequency at
which the spectral output power at the fundamental
frequency (as determined by FFT analysis) is reduced by
3dB from its full-scale low-frequency value. This is also
referred to as Full Power Bandwidth.
Aperture Delay or Sampling Delay is the time required
after the rise of the clock input for the sampling switch to
open, at which time the signal is held for conversion.
Aperture Jitter is the RMS variation in aperture delay for a
set of samples.
Clock Duty Cycle is the ratio of the time the clock wave is at
logic high to the total time of one clock period.
Differential Non-Linearity (DNL) is the deviation of any
code width from an ideal 1 LSB step.
28
KAD5512P-50
Effective Number of Bits (ENOB) is an alternate method of
specifying Signal to Noise-and-Distortion Ratio (SINAD). In
dB, it is calculated as: ENOB = (SINAD - 1.76)/6.02
Gain Error is the ratio of the difference between the voltages
that cause the lowest and highest code transitions to the full-
scale voltage less 2 LSB. It is typically expressed in percent.
Integral Non-Linearity (INL) is the maximum deviation of
the ADC’s transfer function from a best fit line determined by
a least squares curve fit of that transfer function, measured
in units of LSBs.
Least Significant Bit (LSB) is the bit that has the smallest
value or weight in a digital word. Its value in terms of input
voltage is V
Missing Codes are output codes that are skipped and will
never appear at the ADC output. These codes cannot be
reached with any input value.
Most Significant Bit (MSB) is the bit that has the largest
value or weight.
Pipeline Delay is the number of clock cycles between the
initiation of a conversion and the appearance at the output
pins of the data.
Power Supply Rejection Ratio (PSRR) is the ratio of the
observed magnitude of a spur in the ADC FFT, caused by an
AC signal superimposed on the power supply voltage.
Signal to Noise-and-Distortion (SINAD) is the ratio of the
RMS signal amplitude to the RMS sum of all other spectral
components below one half the clock frequency, including
harmonics but excluding DC.
Signal-to-Noise Ratio (without Harmonics) is the ratio of
the RMS signal amplitude to the RMS sum of all other
spectral components below one-half the sampling frequency,
excluding harmonics and DC.
SNR and SINAD are either given in units of dB when the
power of the fundamental is used as the reference, or dBFS
(dB to full scale) when the converter’s full-scale input power
is used as the reference.
Spurious-Free-Dynamic Range (SFDR) is the ratio of the
RMS signal amplitude to the RMS value of the largest
spurious spectral component. The largest spurious spectral
component may or may not be a harmonic.
FS
/(2
N
-1) where N is the resolution in bits.
October 9, 2009
FN6805.3

Related parts for KDC5512-50EVALZ