ksz8051mlli Micrel Semiconductor, ksz8051mlli Datasheet - Page 14

no-image

ksz8051mlli

Manufacturer Part Number
ksz8051mlli
Description
10base-t/100base-tx Physical Layer Transceiver
Manufacturer
Micrel Semiconductor
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ksz8051mlli TR
Manufacturer:
Micrel Inc
Quantity:
10 000
Part Number:
ksz8051mlliTR
Manufacturer:
MICREL/麦瑞
Quantity:
20 000
Micrel, Inc.
KSZ8051MLL
Functional Description: 10Base-T/100Base-TX Transceiver
The KSZ8051MLL is an integrated single 3.3V supply Fast Ethernet transceiver. It is fully compliant with the IEEE 802.3
Specification, and reduces board cost and simplifies board layout by using on-chip termination resistors for the two
differential pairs and by integrating the regulator to supply the 1.2V core.
On the copper media side, the KSZ8051MLL supports 10Base-T and 100Base-TX for transmission and reception of data
over a standard CAT-5 unshielded twisted pair (UTP) cable, and HP auto MDI/MDI-X for reliable detection of and
correction for straight-through and crossover cables.
On the MAC processor side, the KSZ8051MLL offers the Media Independent Interface (MII) for direct connection with MII
compliant Ethernet MAC processors and switches.
The MII management bus option gives the MAC processor complete access to the KSZ8051MLL control and status
registers. Additionally, an interrupt pin eliminates the need for the processor to poll for PHY status change.
100Base-TX Transmit
The 100Base-TX transmit function performs parallel-to-serial conversion, 4B/5B encoding, scrambling, NRZ-to-NRZI
conversion, and MLT3 encoding and transmission.
The circuitry starts with a parallel-to-serial conversion, which converts the MII data from the MAC into a 125MHz serial bit
stream. The data and control stream is then converted into 4B/5B coding and followed by a scrambler. The serialized data
is further converted from NRZ-to-NRZI format, and then transmitted in MLT3 current output. The output current is set by
an external 6.49kΩ 1% resistor for the 1:1 transformer ratio.
The output signal has a typical rise/fall time of 4ns and complies with the ANSI TP-PMD standard regarding amplitude
balance, overshoot, and timing jitter. The wave-shaped 10Base-T output is also incorporated into the 100Base-TX
transmitter.
100Base-TX Receive
The 100Base-TX receiver function performs adaptive equalization, DC restoration, MLT3-to-NRZI conversion, data and
clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion.
The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted pair
cable. Since the amplitude loss and phase distortion is a function of the cable length, the equalizer must adjust its
characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on
comparisons of incoming signal strength against some known cable characteristics, and then tunes itself for optimization.
This is an ongoing process and self-adjusts against environmental changes such as temperature variations.
Next, the equalized signal goes through a DC restoration and data conversion block. The DC restoration circuit is used to
compensate for the effect of baseline wander and to improve the dynamic range. The differential data conversion circuit
converts the MLT3 format back to NRZI. The slicing threshold is also adaptive.
The clock recovery circuit extracts the 125MHz clock from the edges of the NRZI signal. This recovered clock is then used
to convert the NRZI signal into the NRZ format. This signal is sent through the de-scrambler followed by the 4B/5B
decoder. Finally, the NRZ serial data is converted to the MII format and provided as the input data to the MAC.
10Base-T Transmit
The 10Base-T drivers are incorporated with the 100Base-TX drivers to allow for transmission using the same magnetic.
The drivers perform internal wave-shaping and pre-emphasis, and output 10Base-T signals with typical amplitude of 2.5V
peak. The 10Base-T signals have harmonic contents that are at least 27dB below the fundamental frequency when driven
by an all-ones Manchester-encoded signal.
10Base-T Receive
On the receive side, input buffer and level detecting squelch circuits are employed. A differential input receiver circuit and
a PLL performs the decoding function. The Manchester-encoded data stream is separated into clock signal and NRZ data.
A squelch circuit rejects signals with levels less than 400 mV or with short pulse widths to prevent noise at the RXP and
RXM inputs from falsely trigger the decoder. When the input exceeds the squelch limit, the PLL locks onto the incoming
signal and the KSZ8051MLL decodes a data frame. The receive clock is kept active during idle periods in between data
reception.
July 2010
14
M9999-071210-1.0

Related parts for ksz8051mlli