MC68340AG16E Freescale Semiconductor, MC68340AG16E Datasheet - Page 32

no-image

MC68340AG16E

Manufacturer Part Number
MC68340AG16E
Description
IC MPU 32BIT 16MHZ 144-LQFP
Manufacturer
Freescale Semiconductor
Datasheet

Specifications of MC68340AG16E

Processor Type
M683xx 32-Bit
Speed
16MHz
Voltage
5V
Mounting Type
Surface Mount
Package / Case
144-LQFP
Controller Family/series
68K
Core Size
32 Bit
No. Of I/o's
16
Cpu Speed
16MHz
No. Of Timers
2
Embedded Interface Type
UART
Digital Ic Case Style
LQFP
Rohs Compliant
Yes
Processor Series
M683xx
Core
CPU32
Maximum Clock Frequency
16 MHz
Maximum Operating Temperature
+ 105 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
0 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Features
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68340AG16E
Manufacturer:
Freescale Semiconductor
Quantity:
135
Part Number:
MC68340AG16E
Manufacturer:
FREESCALE
Quantity:
329
Part Number:
MC68340AG16E
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC68340AG16E
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
MC68340AG16EB1
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Freescale Semiconductor, Inc.
Each communication channel is completely independent. Data formats can be 5, 6, 7, or 8
bits with even, odd, or no parity and stop bits up to 2 in 1/16 increments. Four-byte receive
buffers and two-byte transmit buffers minimize CPU service calls. A wide variety of error
detection and maskable interrupt capability is provided on each channel. Full-duplex,
autoecho loopback, local loopback, and remote loopback modes can be selected.
Multidrop applications are supported.
A 3.6864-MHz crystal drives the baud rate generators. Each transmit and receive channel
can be programmed for a different baud rate, or an external 1 and 16 clock input can be
selected. Full modem support is provided with separate request-to-send (RTS) and clear-
to-send (CTS) signals for each channel. One channel also provides service request
signals. The two serial ports can sustain rates of 9.8 Mbps with a 25-MHz system clock in
1 mode, 612 kbps in 16 mode (6.5 Mbps and 410 kbps
16.78 MHz).
@
1.3.4 Timer Modules
Timers and counters are used in a system to monitor elapsed time, generate waveforms,
measure signals, keep time-of-day clocks, initiate DRAM refresh cycles, count events, and
provide “time slices” to ensure that no task dominates the activity of the processor. A
counter that counts clock pulses makes a timer, which is most useful when it causes
certain actions to occur in response to reaching desired counts.
The MC68340 has two, identical, versatile, on-chip counter/timers as well as a simple
timer in the SIM40. These general-purpose counter/timers can be used for precisely timed
events without the errors to which software-based counters and timers are susceptible—
e.g., errors caused by dynamic memory refreshing, DMA cycle steals, and interrupt
servicing. The programmable timer operating modes are input capture, output compare,
square-wave generation, variable duty-cycle square-wave generation, variable-width
single-shot pulse generation, event counting, period measurement, and pulse-width
measurement.
Each timer consists of a 16-bit countdown counter with an 8-bit countdown prescaler for a
composite 24-bit resolution. The two timers can be externally cascaded for a maximum
count width of 48 bits. The counter/timer can be clocked by the internal system clock
generated by the SIM40 ( 2) or by an external clock input. Either the processor or external
stimuli can trigger the starting and stopping of the counter. When a counter reaches a
predetermined value, either an external output signal can be driven, or an interrupt can be
made to the CPU32. The finest resolution of the timer is 80 ns with a 25-MHz system
clock (125 ns
16.78 MHz).
@
1.4 POWER CONSUMPTION MANAGEMENT
The MC68340 is very power efficient due to its advanced 0.8-
HCMOS process
technology and its static logic design. The resulting power consumption is typically
900 mW in full operation
25 MHz (650 mW
16.78 MHz)—far less than the
@
@
comparable discrete component implementation the MC68340 can replace. For
applications employing reduced voltage operation, selection of the MC68340V, which
1-8
MC68340 USER’S MANUAL
MOTOROLA
For More Information On This Product,
Go to: www.freescale.com

Related parts for MC68340AG16E