ATmega64M1 Atmel Corporation, ATmega64M1 Datasheet - Page 226

no-image

ATmega64M1

Manufacturer Part Number
ATmega64M1
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega64M1

Flash (kbytes)
64 Kbytes
Pin Count
32
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
27
Ext Interrupts
27
Usb Speed
No
Usb Interface
No
Spi
1
Uart
1
Can
1
Lin
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
11
Adc Resolution (bits)
10
Adc Speed (ksps)
125
Analog Comparators
4
Resistive Touch Screen
No
Dac Channels
1
Dac Resolution (bits)
10
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
4
Eeprom (bytes)
2048
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
14
Input Capture Channels
1
Pwm Channels
10
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega64M1-15AZ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64M1-15MD
Manufacturer:
ATMEL
Quantity:
700
Part Number:
ATmega64M1-AU
Manufacturer:
Atmel
Quantity:
10 000
21.4
226
Prescaling and Conversion Timing
ATmega16M1/32M1/64M1
Figure 21-2. ADC Auto Trigger Logic
Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon
as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-
stantly sampling and updating the ADC Data Register. The first conversion must be started by
writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive
conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not. The free
running mode is not allowed on the amplified channels.
If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be
read as one during a conversion, independently of how the conversion was started.
Figure 21-3. ADC Prescaler
By default, the successive approximation circuitry requires an input clock frequency between
50kHz and 2MHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 2MHz to get a higher sample rate.
The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100kHz. The prescaling is set by the ADPS bits in ADCSRA.
The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit
in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously
reset when ADEN is low.
ADSC
SOURCE n
ADIF
SOURCE 1
.
.
.
.
ADEN
START
ADTS[2:0]
ADPS0
ADPS1
ADPS2
CK
DETECTOR
EDGE
Reset
ADATE
7-BIT ADC PRESCALER
ADC CLOCK SOURCE
START
CONVERSION
PRESCALER
LOGIC
CLK
ADC
8209D–AVR–11/10

Related parts for ATmega64M1