ST72F621L4M1 STMicroelectronics, ST72F621L4M1 Datasheet - Page 24

IC MCU 8BIT LS 16K 34-SOIC

ST72F621L4M1

Manufacturer Part Number
ST72F621L4M1
Description
IC MCU 8BIT LS 16K 34-SOIC
Manufacturer
STMicroelectronics
Series
ST7r
Datasheet

Specifications of ST72F621L4M1

Core Processor
ST7
Core Size
8-Bit
Speed
8MHz
Connectivity
SCI, SPI, USB
Peripherals
DMA, LVD, POR, PWM, WDT
Number Of I /o
23
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Ram Size
768 x 8
Voltage - Supply (vcc/vdd)
4 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
0°C ~ 70°C
Package / Case
34-SOIC (7.5mm Width)
Processor Series
ST72F6x
Core
ST7
Data Bus Width
8 bit
Data Ram Size
768 B
Interface Type
SCI, SPI, USB
Maximum Clock Frequency
12 MHz
Number Of Programmable I/os
23
Number Of Timers
2
Operating Supply Voltage
4 V to 5.5 V
Maximum Operating Temperature
+ 70 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
0 C
On-chip Adc
10 bit
For Use With
497-5046 - KIT TOOL FOR ST7/UPSD/STR7 MCU
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
In Transition
Other names
497-2112-5

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ST72F621L4M1
Manufacturer:
ST
Quantity:
2 272
Part Number:
ST72F621L4M1
Manufacturer:
ST
Quantity:
5
Part Number:
ST72F621L4M1ES
Manufacturer:
ST
0
Part Number:
ST72F621L4M1L
Manufacturer:
ST
0
ST7262xxx
7 INTERRUPTS
7.1 INTRODUCTION
The CPU enhanced interrupt management pro-
vides the following features:
This interrupt management is based on:
– Bit 5 and bit 3 of the CPU CC register (I1:0),
– Interrupt software priority registers (ISPRx),
– Fixed interrupt vector addresses located at the
This enhanced interrupt controller guarantees full
upward compatibility with the standard (not nest-
ed) CPU interrupt controller.
7.2 MASKING AND PROCESSING FLOW
The interrupt masking is managed by the I1 and I0
bits of the CC register and the ISPRx registers
which give the interrupt software priority level of
each interrupt vector (see
ing flow is shown in
Figure 20. Interrupt Processing Flowchart
24/139
high addresses of the memory map (FFE0h to
FFFFh) sorted by hardware priority order.
– Up to 4 software programmable nesting levels
– Up to 16 interrupt vectors fixed by hardware
– 3 non maskable events: RESET, TRAP, TLI
Hardware interrupts
Software interrupt (TRAP)
Nested or concurrent interrupt management
with
management:
flexible
RESTORE PC, X, A, CC
FROM STACK
RESET
interrupt
Figure
Table
20.
priority
5). The process-
Y
and
INSTRUCTION
INTERRUPT
INSTRUCTION
FETCH NEXT
PENDING
EXECUTE
N
“IRET”
N
level
Doc ID 6996 Rev 5
Y
When an interrupt request has to be serviced:
– Normal processing is suspended at the end of
– The PC, X, A and CC registers are saved onto
– I1 and I0 bits of CC register are set according to
– The PC is then loaded with the interrupt vector of
The interrupt service routine should end with the
IRET instruction which causes the contents of the
saved registers to be recovered from the stack.
Note: As a consequence of the IRET instruction,
the I1 and I0 bits will be restored from the stack
and the program in the previous level will resume.
Table 5. Interrupt Software Priority Levels
Level 0 (main)
Level 1
Level 2
Level 3 (= interrupt disable)
Interrupt software priority
the current instruction execution.
the stack.
the corresponding values in the ISPRx registers
of the serviced interrupt vector.
the interrupt to service and the first instruction of
the interrupt service routine is fetched (refer to
“Interrupt Mapping” table for vector addresses).
STAYS PENDING
THE INTERRUPT
Interrupt has the same or a
LOAD I1:0 FROM INTERRUPT SW REG.
LOAD PC FROM INTERRUPT VECTOR
lower software priority
than current one
STACK PC, X, A, CC
Level
High
Low
I1:0
TLI
N
I1
0
0
1
1
Y
I0
1
0
1
0

Related parts for ST72F621L4M1