MC9S12XDT256MAA Freescale Semiconductor, MC9S12XDT256MAA Datasheet - Page 1102

IC MCU 256K FLASH 80-QFP

MC9S12XDT256MAA

Manufacturer Part Number
MC9S12XDT256MAA
Description
IC MCU 256K FLASH 80-QFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of MC9S12XDT256MAA

Core Processor
HCS12X
Core Size
16-Bit
Speed
80MHz
Connectivity
CAN, EBI/EMI, I²C, IrDA, LIN, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
59
Program Memory Size
256KB (256K x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
16K x 8
Voltage - Supply (vcc/vdd)
2.35 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 125°C
Package / Case
80-QFP
Cpu Family
HCS12
Device Core Size
16b
Frequency (max)
40MHz
Interface Type
CAN/I2C/SCI/SPI
Total Internal Ram Size
16KB
# I/os (max)
59
Number Of Timers - General Purpose
12
Operating Supply Voltage (typ)
2.5/5V
Operating Supply Voltage (max)
2.75/5.5V
Operating Supply Voltage (min)
2.35/3.15V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
CISC
Operating Temp Range
-40C to 125C
Operating Temperature Classification
Automotive
Mounting
Surface Mount
Pin Count
80
Package Type
PQFP
Processor Series
S12XD
Core
HCS12
Data Bus Width
16 bit
Data Ram Size
16 KB
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
59
Number Of Timers
12
Operating Supply Voltage
0 V to 5.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
EVB9S12XDP512E
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12XDT256MAA
Manufacturer:
FREESCALE
Quantity:
7 540
Part Number:
MC9S12XDT256MAA
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12XDT256MAA
Manufacturer:
FREESCALE
Quantity:
7 540
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
26.5
26.5.1
If a command is active (CCIF = 0) when the MCU enters the wait mode, the active command and any
buffered command will be completed.
The EEPROM module can recover the MCU from wait mode if the CBEIF and CCIF interrupts are enabled
(see
26.5.2
If a command is active (CCIF = 0) when the MCU enters the stop mode, the operation will be aborted and,
if the operation is program, sector erase, mass erase, or sector modify, the EEPROM array data being
programmed or erased may be corrupted and the CCIF and ACCERR flags will be set. If active, the high
voltage circuitry to the EEPROM memory will immediately be switched off when entering stop mode.
Upon exit from stop mode, the CBEIF flag is set and any buffered command will not be launched. The
ACCERR flag must be cleared before starting a command write sequence (see
“Command Write
26.5.3
In background debug mode (BDM), the EPROT register is writable. If the MCU is unsecured, then all
EEPROM commands listed in
chip mode, the only command available to execute is mass erase.
26.6
The EEPROM module does not provide any security information to the MCU. After each reset, the
security state of the MCU is a function of information provided by the Flash module (see the specific FTX
Block Guide).
1104
Section 26.8,
Operating Modes
EEPROM Module Security
Wait Mode
Stop Mode
Background Debug Mode
As active commands are immediately aborted when the MCU enters stop
mode, it is strongly recommended that the user does not use the STOP
instruction during program, sector erase, mass erase, or sector modify
operations.
“Interrupts”).
Sequence”).
Table 26-10
MC9S12XDP512 Data Sheet, Rev. 2.21
can be executed. If the MCU is secured and is in special single
NOTE
Section 26.4.1.2,
Freescale Semiconductor

Related parts for MC9S12XDT256MAA