PIC18F2480 MICROCHIP [Microchip Technology], PIC18F2480 Datasheet - Page 115

no-image

PIC18F2480

Manufacturer Part Number
PIC18F2480
Description
28/40/44-Pin Enhanced Flash Microcontrollers with ECAN Technology, 10-Bit A/D and nanoWatt Technology
Manufacturer
MICROCHIP [Microchip Technology]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F2480-E/ML
Manufacturer:
MICROCHIP
Quantity:
1 001
Part Number:
PIC18F2480-E/SO
Manufacturer:
Microchip Technology
Quantity:
135
Part Number:
PIC18F2480-I/SO
Manufacturer:
Microchi
Quantity:
9 999
Part Number:
PIC18F2480-I/SO
Manufacturer:
MIC
Quantity:
20 000
Part Number:
PIC18F2480-I/SO
0
Part Number:
PIC18F2480-I/SP
Manufacturer:
TDK
Quantity:
64
Part Number:
PIC18F2480-I/SP
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
9.0
The PIC18F2480/2580/4480/4580 devices have multi-
ple interrupt sources and an interrupt priority feature
that allows each interrupt source to be assigned a high
priority level or a low priority level. The high priority
interrupt vector is at 000008h and the low priority
interrupt vector is at 000018h. High priority interrupt
events will interrupt any low priority interrupts that may
be in progress.
There are ten registers which are used to control
interrupt operation. These registers are:
• RCON
• INTCON
• INTCON2
• INTCON3
• PIR1, PIR2, PIR3
• PIE1, PIE2, PIE3
• IPR1, IPR2, IPR3
It is recommended that the Microchip header files
supplied with MPLAB
names in these registers. This allows the assembler/
compiler to automatically take care of the placement of
these bits within the specified register.
Each interrupt source has three bits to control its
operation. The functions of these bits are:
• Flag bit to indicate that an interrupt event
• Enable bit that allows program execution to
• Priority bit to select high priority or low priority
The interrupt priority feature is enabled by setting the
IPEN bit (RCON<7>). When interrupt priority is
enabled, there are two bits which enable interrupts
globally. Setting the GIEH bit (INTCON<7>) enables all
interrupts that have the priority bit set (high priority).
Setting the GIEL bit (INTCON<6>) enables all
interrupts that have the priority bit cleared (low priority).
When the interrupt flag, enable bit and appropriate
global interrupt enable bit are set, the interrupt will vec-
tor immediately to address 000008h or 000018h,
depending on the priority bit setting. Individual inter-
rupts can be disabled through their corresponding
enable bits.
 2004 Microchip Technology Inc.
occurred
branch to the interrupt vector address when the
flag bit is set
INTERRUPTS
®
IDE be used for the symbolic bit
PIC18F2480/2580/4480/4580
Preliminary
When the IPEN bit is cleared (default state), the inter-
rupt priority feature is disabled and interrupts are com-
patible
Compatibility mode, the interrupt priority bits for each
source have no effect. INTCON<6> is the PEIE bit,
which enables/disables all peripheral interrupt sources.
INTCON<7> is the GIE bit, which enables/disables all
interrupt sources. All interrupts branch to address
000008h in Compatibility mode.
When an interrupt is responded to, the global interrupt
enable bit is cleared to disable further interrupts. If the
IPEN bit is cleared, this is the GIE bit. If interrupt priority
levels are used, this will be either the GIEH or GIEL bit.
High priority interrupt sources can interrupt a low
priority interrupt. Low priority interrupts are not
processed while high priority interrupts are in progress.
The return address is pushed onto the stack and the
PC is loaded with the interrupt vector address
(000008h or 000018h). Once in the Interrupt Service
Routine, the source(s) of the interrupt can be deter-
mined by polling the interrupt flag bits. The interrupt
flag bits must be cleared in software before re-enabling
interrupts to avoid recursive interrupts.
The “return from interrupt” instruction, RETFIE, exits
the interrupt routine and sets the GIE bit (GIEH or GIEL
if priority levels are used), which re-enables interrupts.
For external interrupt events, such as the INT pins or
the PORTB input change interrupt, the interrupt latency
will be three to four instruction cycles. The exact
latency is the same for one or two-cycle instructions.
Individual interrupt flag bits are set, regardless of the
status of their corresponding enable bit or the GIE bit.
Note:
with
Do not use the MOVFF instruction to modify
any of the interrupt control registers while
any interrupt is enabled. Doing so may
cause erratic microcontroller behavior.
PICmicro
®
mid-range
DS39637A-page 113
devices.
In

Related parts for PIC18F2480