DSPIC30F2012-30I/SP Microchip Technology, DSPIC30F2012-30I/SP Datasheet - Page 35

IC DSPIC MCU/DSP 12K 28DIP

DSPIC30F2012-30I/SP

Manufacturer Part Number
DSPIC30F2012-30I/SP
Description
IC DSPIC MCU/DSP 12K 28DIP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F2012-30I/SP

Program Memory Type
FLASH
Program Memory Size
12KB (4K x 24)
Package / Case
28-DIP (0.300", 7.62mm)
Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
20
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 10x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
30 MHz
Number Of Programmable I/os
12
Data Ram Size
1 KB
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM300027, DM330011, DM300018, DM183021
Minimum Operating Temperature
- 40 C
Core Frequency
30MHz
Embedded Interface Type
I2C, SPI, UART
No. Of I/o's
20
Flash Memory Size
12KB
Supply Voltage Range
2.5V To 5.5V
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
DSPIC30F201230ISP

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F2012-30I/SP
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
3.2
The core has two data spaces. The data spaces can be
considered either separate (for some DSP instruc-
tions), or as one unified linear address range (for MCU
instructions). The data spaces are accessed using two
Address Generation Units (AGUs) and separate data
paths.
3.2.1
The data space memory is split into two blocks, X and
Y data space. A key element of this architecture is that
Y space is a subset of X space, and is fully contained
within X space. In order to provide an apparent Linear
Addressing space, X and Y spaces have contiguous
addresses.
FIGURE 3-7:
© 2006 Microchip Technology Inc.
Data Address Space
DATA SPACE MEMORY MAP
2 Kbyte
SFR Space
Optionally
Mapped
into Program
Memory
SRAM Space
1 Kbyte
dsPIC30F2011/2012 DATA SPACE MEMORY MAP
Address
MSB
0x1FFF
0x0001
0x07FF
0x0801
0x09FF
0x0A01
0x0BFF
0x0C01
0x8001
0xFFFF
dsPIC30F2011/2012/3012/3013
MSB
Unimplemented (X)
Y Data RAM (Y)
X Data RAM (X)
16 bits
SFR Space
X Data
When executing any instruction other than one of the
MAC class of instructions, the X block consists of the 64-
Kbyte data address space (including all Y addresses).
When executing one of the MAC class of instructions,
the X block consists of the 64-Kbyte data address
space, excluding the Y address block (for data reads
only). In other words, all other instructions regard the
entire data memory as one composite address space.
The MAC class instructions extract the Y address space
from data space and address it using EAs sourced from
W10 and W11. The remaining X data space is
addressed using W8 and W9. Both address spaces are
concurrently accessed only with the MAC class
instructions.
The data space memory map for the dsPIC30F2011
and dsPIC30F2012 is shown in Figure 3-7. The data
space memory map for the dsPIC30F3012 and
dsPIC30F3013 is shown in Figure 3-8.
LSB
0x0000
0x07FE
0x0800
0x09FE
0x0A00
0x0BFE
0x0C00
0x1FFE
0x8000
0xFFFE
Address
LSB
8 Kbyte
Near
Data
Space
DS70139E-page 33

Related parts for DSPIC30F2012-30I/SP