ATMEGA32-16PU Atmel, ATMEGA32-16PU Datasheet - Page 225

IC AVR MCU 32K 16MHZ 5V 40DIP

ATMEGA32-16PU

Manufacturer Part Number
ATMEGA32-16PU
Description
IC AVR MCU 32K 16MHZ 5V 40DIP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA32-16PU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
2-Wire/SPI/USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
A/d Inputs
8-Channel, 10-Bit
Cpu Speed
16 MIPS
Eeprom Memory
1K Bytes
Input Output
32
Interface
2-Wire/SPI/USART
Memory Type
Flash
Number Of Bits
8
Package Type
40-pin PDIP
Programmable Memory
32K Bytes
Timers
2-8-bit, 1-16-bit
Voltage, Range
4.5-5.5 V
Data Rom Size
1024 B
Height
4.83 mm
Length
52.58 mm
Supply Voltage (max)
5.5 V
Supply Voltage (min)
4.5 V
Width
13.97 mm
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
1024Byte
Ram Memory Size
2KB
Rohs Compliant
Yes
For Use With
ATSTK524 - KIT STARTER ATMEGA32M1/MEGA32C1ATSTK600-TQFP32 - STK600 SOCKET/ADAPTER 32-TQFPATSTK600-TQFP44 - STK600 SOCKET/ADAPTER 44-TQFPATSTK600-DIP40 - STK600 SOCKET/ADAPTER 40-PDIP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32-16PU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Boundary-scan Chain
Boundary-scan Specific
JTAG Instructions
EXTEST; $0
IDCODE; $1
2503G–AVR–11/04
Figure 115. Reset Register
The Boundary-scan Chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having Off-chip connections.
See “Boundary-scan Chain” on page 227 for a complete description.
The instruction register is 4-bit wide, supporting up to 16 instructions. Listed below are
the JTAG instructions useful for Boundary-scan operation. Note that the optional HIGHZ
instruction is not implemented, but all outputs with tri-state capability can be set in high-
impedant state by using the AVR_RESET instruction, since the initial state for all port
pins is tri-state.
As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.
The OPCODE for each instruction is shown behind the instruction name in hex format.
The text describes which Data Register is selected as path between TDI and TDO for
each instruction.
Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for
testing circuitry external to the AVR package. For port-pins, Pull-up Disable, Output
Control, Output Data, and Input Data are all accessible in the scan chain. For Analog cir-
cuits having Off-chip connections, the interface between the analog and the digital logic
is in the scan chain. The contents of the latched outputs of the Boundary-scan chain is
driven out as soon as the JTAG IR-register is loaded with the EXTEST instruction.
The active states are:
Optional JTAG instruction selecting the 32-bit ID-register as Data Register. The ID-reg-
ister consists of a version number, a device number and the manufacturer code chosen
by JEDEC. This is the default instruction after power-up.
The active states are:
Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
Shift-DR: The Internal Scan Chain is shifted by the TCK input.
Update-DR: Data from the scan chain is applied to output pins.
Capture-DR: Data in the IDCODE-register is sampled into the Boundary-scan
Chain.
Shift-DR: The IDCODE scan chain is shifted by the TCK input.
From other Internal and
External Reset Sources
From
ClockDR · AVR_RESET
TDI
D
Q
TDO
To
ATmega32(L)
Internal Reset
225

Related parts for ATMEGA32-16PU