AT90USB646-MU Atmel, AT90USB646-MU Datasheet - Page 396

IC AVR MCU 64K 64QFN

AT90USB646-MU

Manufacturer Part Number
AT90USB646-MU
Description
IC AVR MCU 64K 64QFN
Manufacturer
Atmel
Series
AVR® 90USBr
Datasheet

Specifications of AT90USB646-MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART, USB, USB OTG
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
48
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VQFN Exposed Pad, 64-HVQFN, 64-SQFN, 64-DHVQFN
Processor Series
90USB
Core
AVR
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
SPI, TWI, USART, USB
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
48
Number Of Timers
4
Operating Supply Voltage
5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
Operating Temperature Range
- 40 C to + 85 C
Cpu Family
AT90
Device Core
AVR
Device Core Size
8b
Frequency (max)
20MHz
Total Internal Ram Size
4KB
# I/os (max)
48
Number Of Timers - General Purpose
4
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
64
Package Type
QFN EP
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATSTK525 - KIT STARTER FOR AT90USBAT90USBKEY2 - KIT DEMO FOR AT90USB
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
AT90USB646-16MU
AT90USB646-16MU

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT90USB646-MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
29.9.18
29.9.19
29.9.20
396
AT90USB64/128
Programming the EEPROM
Reading the EEPROM
Programming the Fuses
Before programming the EEPROM a Chip Erase must be performed, see “Performing Chip
Erase” on page 395.
Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM.
Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM.
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Flash read using programming instruction 3a.
3. Load the page address using programming instructions 3b, 3c and 3d. PCWORD (refer
4. Enter JTAG instruction PROG_PAGEREAD.
5. Read the entire page (or Flash) by shifting out all instruction words in the page (or
6. Enter JTAG instruction PROG_COMMANDS.
7. Repeat steps 3 to 6 until all data have been read.
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable EEPROM write using programming instruction 4a.
3. Load address High byte using programming instruction 4b.
4. Load address Low byte using programming instruction 4c.
5. Load data using programming instructions 4d and 4e.
6. Repeat steps 4 and 5 for all data bytes in the page.
7. Write the data using programming instruction 4f.
8. Poll for EEPROM write complete using programming instruction 4g, or wait for t
9. Repeat steps 3 to 8 until all data have been programmed.
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable EEPROM read using programming instruction 5a.
3. Load address using programming instructions 5b and 5c.
4. Read data using programming instruction 5d.
5. Repeat steps 3 and 4 until all data have been read.
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Fuse write using programming instruction 6a.
3. Load data high byte using programming instructions 6b. A bit value of “0” will program
4. Write Fuse High byte using programming instruction 6c.
5. Poll for Fuse write complete using programming instruction 6d, or wait for t
to
0.
Flash), starting with the LSB of the first instruction in the page (Flash) and ending with
the MSB of the last instruction in the page (Flash). The Capture-DR state both captures
the data from the Flash, and also auto-increments the program counter after each word
is read. Note that Capture-DR comes before the shift-DR state. Hence, the first byte
which is shifted out contains valid data.
(refer to
the corresponding fuse, a “1” will unprogram the fuse.
Table 29-13 on page
Table 29-11 on page
Table 29-13 on page
380).
371) is used to address within one page and must be written as
380).
WLRH
7593K–AVR–11/09
(refer to
WLRH

Related parts for AT90USB646-MU