AT90USB646-MU Atmel, AT90USB646-MU Datasheet - Page 46

IC AVR MCU 64K 64QFN

AT90USB646-MU

Manufacturer Part Number
AT90USB646-MU
Description
IC AVR MCU 64K 64QFN
Manufacturer
Atmel
Series
AVR® 90USBr
Datasheet

Specifications of AT90USB646-MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART, USB, USB OTG
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
48
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VQFN Exposed Pad, 64-HVQFN, 64-SQFN, 64-DHVQFN
Processor Series
90USB
Core
AVR
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
SPI, TWI, USART, USB
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
48
Number Of Timers
4
Operating Supply Voltage
5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
Operating Temperature Range
- 40 C to + 85 C
Cpu Family
AT90
Device Core
AVR
Device Core Size
8b
Frequency (max)
20MHz
Total Internal Ram Size
4KB
# I/os (max)
48
Number Of Timers - General Purpose
4
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
64
Package Type
QFN EP
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATSTK525 - KIT STARTER FOR AT90USBAT90USBKEY2 - KIT DEMO FOR AT90USB
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
AT90USB646-16MU
AT90USB646-16MU

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT90USB646-MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
6.7
6.8
46
Clock Output Buffer
Timer/Counter Oscillator
AT90USB64/128
Figure 6-3.
When this clock source is selected, start-up times are determined by the SUT Fuses as shown in
Table
Table 6-9.
When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. If changes of more than 2% is
required, ensure that the MCU is kept in Reset during the changes.
Note that the System Clock Prescaler can be used to implement run-time changes of the internal
clock frequency while still ensuring stable operation. Refer to
47
The device can output the system clock on the CLKO pin. To enable the output, the CKOUT
Fuse has to be programmed. This mode is suitable when the chip clock is used to drive other cir-
cuits on the system. The clock also will be output during reset, and the normal operation of I/O
pin will be overridden when the fuse is programmed. Any clock source, including the internal RC
Oscillator, can be selected when the clock is output on CLKO. If the System Clock Prescaler is
used, it is the divided system clock that is output.
The device can operate its Timer/Counter2 from an external 32.768 kHz watch crystal or a exter-
nal clock source. See
Applying an external clock source to TOSC1 requires EXCLK in the ASSR Register written to
logic one. See
tion on selecting external clock as input instead of a 32 kHz crystal.
BOD enabled
Fast rising power
Slowly rising power
for details.
Power Conditions
6-9.
External Clock Drive Configuration
Start-up Times for the External Clock Selection
“Asynchronous operation of the Timer/Counter” on page 165
Figure 6-2 on page 42
EXTERNAL
SIGNAL
CLOCK
Start-up Time from Power-
down and Power-save
NC
Reserved
6 CK
6 CK
6 CK
for crystal connection.
XTAL2
XTAL1
GND
Additional Delay from
“System Clock Prescaler” on page
Reset (V
14CK + 4.1 ms
14CK + 65 ms
14CK
CC
= 5.0V)
for further descrip-
7593K–AVR–11/09
SUT1..0
00
01
10
11

Related parts for AT90USB646-MU