ATMEGA6490-16AI Atmel, ATMEGA6490-16AI Datasheet - Page 245

IC AVR MCU FLASH 64K 5V 100TQFP

ATMEGA6490-16AI

Manufacturer Part Number
ATMEGA6490-16AI
Description
IC AVR MCU FLASH 64K 5V 100TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA6490-16AI

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
68
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-TQFP, 100-VQFP
For Use With
ATSTK600-TQFP100 - STK600 SOCKET/ADAPTER 100-TQFPATSTK504 - STARTER KIT AVR EXP MOD 100P LCD
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA6490-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA6490-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
24. JTAG Interface and On-chip Debug System
24.1
24.2
24.3
2552K–AVR–04/11
Features
Overview
Test Access Port – TAP
The AVR IEEE std. 1149.1 compliant JTAG interface can be used for
A brief description is given in the following sections. Detailed descriptions for Programming via
the JTAG interface, and using the Boundary-scan Chain can be found in the sections
ming via the JTAG Interface” on page 313
251, respectively. The On-chip Debug support is considered being private JTAG instructions,
and distributed within ATMEL and to selected third party vendors only.
Figure 24-1
TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP Controller
selects either the JTAG Instruction Register or one of several Data Registers as the scan chain
(Shift Register) between the TDI – input and TDO – output. The Instruction Register holds JTAG
instructions controlling the behavior of a Data Register.
The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data Registers used
for board-level testing. The JTAG Programming Interface (actually consisting of several physical
and virtual Data Registers) is used for serial programming via the JTAG interface. The Internal
Scan Chain and Break Point Scan Chain are used for On-chip debugging only.
The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins
constitute the Test Access Port – TAP. These pins are:
JTAG (IEEE std. 1149.1 Compliant) Interface
Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
Debugger Access to:
All Internal Peripheral Units
Internal and External RAM
The Internal Register File
Program Counter
EEPROM and Flash Memories
Extensive On-chip Debug Support for Break Conditions, Including
AVR Break Instruction
Break on Change of Program Memory Flow
Single Step Break
Program Memory Break Points on Single Address or Address Range
Data Memory Break Points on Single Address or Address Range
Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
On-chip Debugging Supported by AVR Studio
Testing PCBs by using the JTAG Boundary-scan capability
Programming the non-volatile memories, Fuses and Lock bits
On-chip debugging
TMS: Test mode select. This pin is used for navigating through the TAP-controller state
machine.
TCK: Test Clock. JTAG operation is synchronous to TCK.
shows a block diagram of the JTAG interface and the On-chip Debug system. The
and
ATmega329/3290/649/6490
®
“IEEE 1149.1 (JTAG) Boundary-scan” on page
“Program-
245

Related parts for ATMEGA6490-16AI