ATMEGA6490-16AI Atmel, ATMEGA6490-16AI Datasheet - Page 27

IC AVR MCU FLASH 64K 5V 100TQFP

ATMEGA6490-16AI

Manufacturer Part Number
ATMEGA6490-16AI
Description
IC AVR MCU FLASH 64K 5V 100TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA6490-16AI

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
68
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-TQFP, 100-VQFP
For Use With
ATSTK600-TQFP100 - STK600 SOCKET/ADAPTER 100-TQFPATSTK504 - STARTER KIT AVR EXP MOD 100P LCD
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA6490-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA6490-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
8.1.4
ADC Clock – clk
8.2
8.2.1
2552K–AVR–04/11
Clock Sources
Asynchronous Timer Clock – clk
Default Clock Source
ADC
The Asynchronous Timer clock allows the Asynchronous Timer/Counter and the LCD controller
to be clocked directly from an external clock or an external 32kHz clock crystal. The dedicated
clock domain allows using this Timer/Counter as a real-time counter even when the device is in
sleep mode. It also allows the LCD controller output to continue while the rest of the device is in
sleep mode.
The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.
The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.
Table 8-1.
Note:
The various choices for each clocking option is given in the following sections. When the CPU
wakes up from Power-down or Power-save, the selected clock source is used to time the start-
up, ensuring stable Oscillator operation before instruction execution starts. When the CPU starts
from reset, there is an additional delay allowing the power to reach a stable level before com-
mencing normal operation. The Watchdog Oscillator is used for timing this real-time part of the
start-up time. The number of WDT Oscillator cycles used for each time-out is shown in
2. The frequency of the Watchdog Oscillator is voltage dependent as shown in
teristics” on page
Table 8-2.
The device is shipped with CKSEL = “0010”, SUT = “10”, and CKDIV8 programmed. The default
clock source setting is the Internal RC Oscillator with longest start-up time and an initial system
clock prescaling of 8. This default setting ensures that all users can make their desired clock
source setting using an In-System or Parallel programmer.
Device Clocking Option
External Crystal/Ceramic Resonator
External Low-frequency Crystal
Calibrated Internal RC Oscillator
External Clock
Reserved
Typ Time-out (V
1. For all fuses “1” means unprogrammed while “0” means programmed.
4.1ms
65ms
Device Clocking Options Select
Number of Watchdog Oscillator Cycles
335.
CC
ASY
= 5.0V)
Typ Time-out (V
4.3ms
69ms
ATmega329/3290/649/6490
(1)
CC
= 3.0V)
0011, 0001, 0101, 0100
1111 - 1000
0111 - 0110
CKSEL3..0
0010
0000
Number of Cycles
64K (65,536)
4K (4,096)
“Typical Charac-
Table 8-
27

Related parts for ATMEGA6490-16AI