C8051F330 Silicon Laboratories Inc, C8051F330 Datasheet - Page 190

no-image

C8051F330

Manufacturer Part Number
C8051F330
Description
IC 8051 MCU 8K FLASH 20MLP
Manufacturer
Silicon Laboratories Inc
Series
C8051F33xr
Datasheet

Specifications of C8051F330

Core Processor
8051
Core Size
8-Bit
Speed
25MHz
Connectivity
SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals
POR, PWM, Temp Sensor, WDT
Number Of I /o
17
Program Memory Size
8KB (8K x 8)
Program Memory Type
FLASH
Ram Size
768 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 3.6 V
Data Converters
A/D 16x10b; D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
20-QFN
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Eeprom Size
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
C8051F330
Manufacturer:
SILICON
Quantity:
359
Part Number:
C8051F330
Manufacturer:
SILICON LABS/芯科
Quantity:
20 000
Part Number:
C8051F330-GM
Manufacturer:
SiliconL
Quantity:
6 420
Part Number:
C8051F330-GM
Manufacturer:
SILICON
Quantity:
121
Part Number:
C8051F330-GM
Manufacturer:
SILICON LABS/芯科
Quantity:
20 000
Part Number:
C8051F330-GM-15T
Manufacturer:
SILICON
Quantity:
3 741
Part Number:
C8051F330-GMR
Manufacturer:
SILICON LABS/芯科
Quantity:
20 000
Part Number:
C8051F330-GMR
0
Company:
Part Number:
C8051F330-GMR
Quantity:
32 000
Part Number:
C8051F330GM
Manufacturer:
SILLAB
Quantity:
4 419
C8051F330/1, C8051F330D
19.2.1. Edge-triggered Capture Mode
In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA
counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and
PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transi-
tion that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge),
or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn)
in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn
bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and
must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port
pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused
the capture.
Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by
the hardware.
190
Port I/O
Crossbar
CEXn
Figure 19.4. PCA Capture Mode Diagram
W
P
M
1
6
n
x
PCA0CPMn
O
M
E
C
n
0
Rev. 1.2
C
A
P
P
n
C
A
P
N
n
0
1
M
A
T
n
x 0 0 x
T
O
G
n
W
M
P
n
E
C
C
F
n
0
1
C
F
C
R
PCA0CN
C
C
F
4
C
C
F
3
PCA
Timebase
C
C
F
2
C
C
F
1
PCA Interrupt
C
C
F
0
Capture
PCA0CPLn
PCA0L
PCA0CPHn
PCA0H

Related parts for C8051F330