ATmega16A Atmel Corporation, ATmega16A Datasheet - Page 176

no-image

ATmega16A

Manufacturer Part Number
ATmega16A
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega16A

Flash (kbytes)
16 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
32
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega16A-AU
Manufacturer:
HIROSE
Quantity:
3 000
Part Number:
ATmega16A-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16A-AU
Manufacturer:
MICROCHIP
Quantity:
250
Part Number:
ATmega16A-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega16A-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16A-AUR
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
ATmega16A-PU
Manufacturer:
AT
Quantity:
20 000
Company:
Part Number:
ATmega16A-PU
Quantity:
25 000
Part Number:
ATmega16A-U-TH
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega16AU-TH
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
20.2.1
20.2.2
20.3
20.3.1
20.3.2
176
Data Transfer and Frame Format
ATmega16A
TWI Terminology
Electrical Interconnection
Transferring Bits
START and STOP Conditions
The following definitions are frequently encountered in this section.
Table 20-1.
As depicted in
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector.
This implements a wired-AND function which is essential to the operation of the interface. A low
level on a TWI bus line is generated when one or more TWI devices output a zero. A high level
is output when all TWI devices tri-state their outputs, allowing the pull-up resistors to pull the line
high. Note that all AVR devices connected to the TWI bus must be powered in order to allow any
bus operation.
The number of devices that can be connected to the bus is only limited by the bus capacitance
limit of 400 pF and the 7-bit Slave address space. A detailed specification of the electrical char-
acteristics of the TWI is given in
different sets of specifications are presented there, one relevant for bus speeds below 100 kHz,
and one valid for bus speeds up to 400 kHz.
Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level
of the data line must be stable when the clock line is high. The only exception to this rule is for
generating start and stop conditions.
Figure 20-2. Data Validity
The Master initiates and terminates a data transmission. The transmission is initiated when the
Master issues a START condition on the bus, and it is terminated when the Master issues a
STOP condition. Between a START and a STOP condition, the bus is considered busy, and no
other Master should try to seize control of the bus. A special case occurs when a new START
Term
Master
Slave
Transmitter
Receiver
TWI Terminology
Figure
Description
The device that initiates and terminates a transmission. The Master also generates the
SCL clock.
The device addressed by a Master.
The device placing data on the bus.
The device reading data from the bus.
20-1, both bus lines are connected to the positive supply voltage through
SDA
SCL
“Two-wire Serial Interface Characteristics” on page
Data Stable
Data Change
Data Stable
8154B–AVR–07/09
297. Two

Related parts for ATmega16A