MC56F8346 Freescale Semiconductor, Inc, MC56F8346 Datasheet - Page 128

no-image

MC56F8346

Manufacturer Part Number
MC56F8346
Description
56f8300 16-bit Digital Signal Controllers
Manufacturer
Freescale Semiconductor, Inc
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC56F8346MFVE
Manufacturer:
Freescale
Quantity:
42
Part Number:
MC56F8346MFVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC56F8346MFVE
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
MC56F8346VFV60
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
MC56F8346VFVE
Manufacturer:
Freescale
Quantity:
3
Part Number:
MC56F8346VFVE
Manufacturer:
FREESCAL
Quantity:
275
Part Number:
MC56F8346VFVE
Manufacturer:
FREESCALE
Quantity:
1 745
Part Number:
MC56F8346VFVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC56F8346VFVE
Manufacturer:
FREESCALE
Quantity:
1 745
Part Number:
MC56F8346VFVE
Manufacturer:
FREESCALE
Quantity:
20 000
mode. Therefore, the security feature cannot be used unless all executing code resides on-chip.
When security is enabled, any attempt to override the default internal operating mode by asserting the
EXTBOOT pin in conjunction with reset will be ignored.
7.2.2
On-chip Flash can be read by issuing commands across the EOnCE port, which is the debug interface for
the 56800E core. The TRST, TCLK, TMS, TDO, and TDI pins comprise a JTAG interface onto which the
EOnCE port functionality is mapped. When the device boots, the chip-level JTAG TAP (Test Access Port)
is active and provides the chip’s boundary scan capability and access to the ID register.
Proper implementation of Flash security requires that no access to the EOnCE port is provided when
security is enabled. The 56800E core has an input which disables reading of internal memory via the
JTAG/EOnCE. The FM sets this input at reset to a value determined by the contents of the FM security
bytes.
7.2.3
If a user inadvertently enables Flash security on the device, a built-in lockout recovery mechanism can be
used to reenable access to the device. This mechanism completely reases all on-chip Flash, thus disabling
Flash security. Access to this recovery mechanism is built into CodeWarrior via an instruction in memory
configuration (.cfg) files. Add, or uncomment the following configuration command:
unlock_flash_on_connect 1
For more information, please see CodeWarrior MC56F83xx/DSP5685x Family Targeting Manual.
The LOCKOUT_RECOVERY instruction has an associated 7-bit Data Register (DR) that is used to
control the clock divider circuit within the FM module. This divider, FM_CLKDIV[6:0], is used to control
the period of the clock used for timed events in the FM erase algorithm. This register must be set with
appropriate values before the lockout sequence can begin. Refer to the JTAG section of the 56F8300
Peripheral User Manual for more details on setting this register value.
The value of the JTAG FM_CLKDIV[6:0] will replace the value of the FM register FMCLKD that divides
down the system clock for timed events, as illustrated in
PRDIV8 bit, and FM_CLKDIV[5:0] will map to the DIV[5:0] bits. The combination of PRDIV8 and DIV
must divide the FM input clock down to a frequency of 150kHz-200kHz. The “Writing the FMCLKD
Register” section in the Flash Memory chapter of the 56F8300 Peripheral User Manual gives specific
equations for calculating the correct values.
128
Disabling EOnCE Access
Flash Lockout Recovery
56F8346 Technical Data, Rev. 15
Figure
7-1. FM_CLKDIV[6] will map to the
Freescale Semiconductor
Preliminary

Related parts for MC56F8346