MC9S08EL16CTJ Freescale Semiconductor, MC9S08EL16CTJ Datasheet - Page 228

MCU 16KB FLASH SLIC 20TSSOP

MC9S08EL16CTJ

Manufacturer Part Number
MC9S08EL16CTJ
Description
MCU 16KB FLASH SLIC 20TSSOP
Manufacturer
Freescale Semiconductor
Series
HCS08r
Datasheet

Specifications of MC9S08EL16CTJ

Core Processor
HCS08
Core Size
8-Bit
Speed
40MHz
Connectivity
I²C, LIN, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
16
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 12x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
20-TSSOP
Processor Series
S08EL
Core
HCS08
Data Bus Width
8 bit
Data Ram Size
1 KB
Interface Type
SCI, SPI, I2C, SLIC
Maximum Clock Frequency
200 KHz
Number Of Programmable I/os
16
Number Of Timers
2
Operating Supply Voltage
5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWS08
Development Tools By Supplier
DEMO9S08EL32AUTO, DEMO9S08EL32
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 12 Channel
For Use With
DEMO9S08EL32 - BOARD DEMO FOR 9S08 EL MCUDEMO9S08EL32AUTO - DEMO BOARD EL32 AUTO
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
12.6.18 Digital Receive Filter
The receiver section of the SLIC module includes a digital low-pass filter to remove narrow noise pulses
from the incoming message. A block diagram of the digital filter is shown in
12.6.18.1 Digital Filter Operation
The clock for the digital filter is provided by the SLIC Interface clock. At each positive edge of the clock
signal, the current state of the receiver input signal from the SLCRX pad is sampled. The SLCRX signal
state is used to determine whether the counter should increment or decrement at the next positive edge of
the clock signal.
The counter will increment if the input data sample is high but decrement if the input sample is low. The
counter will thus progress up towards the highest count value (determined by RXFP bit settings), on
average, the SLCRX signal remains high or progress down towards ‘0’ if, on average, the SLCRX signal
remains low. The final counter value which determines when the filter will change state is generated by
shifting the RXFP value right three positions and bitwise OR-ing the result with the value 0x0F. For
example, a prescale setting of divide by 3 would give a count value of 0x2F.
When the counter eventually reaches this value, the digital filter decides that the condition of the SLCRX
signal is at a stable logic level 1 and the data latch is set, causing the filtered Rx data signal to become a
logic level 1. Furthermore, the counter is prevented from overflowing and can only be decremented from
this state.
Alternatively, when the counter eventually reaches the value ‘0’, the digital filter decides that the condition
of the SLCRX signal is at a stable logic level 0 and the data latch is reset, causing the filtered Rx data signal
to become a logic level 0. Furthermore, the counter is prevented from underflowing and can only be
incremented from this state.
The data latch will retain its value until the counter next reaches the opposite end point, signifying a
definite transition of the SLCRX signal.
230
SLCRX PIN
RX DATA
FROM
D
INPUT
SYNC
Q
Figure 12-22. SLIC Module Rx Digital Filter Block Diagram
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3
HOLD
UP/DOWN
4-BIT UP/DOWN COUNTER
OUT
4
PRESCALER (RXFP)
DIGITAL RX FILTER
COMPARATOR
EDGE &
COUNT
Figure
D
Freescale Semiconductor
12-22.
Q
SLIC CLOCK
FILTERED
RX DATA OUT

Related parts for MC9S08EL16CTJ