DSPIC30F5015-30I/PT Microchip Technology, DSPIC30F5015-30I/PT Datasheet - Page 90

IC DSPIC MCU/DSP 66K 64TQFP

DSPIC30F5015-30I/PT

Manufacturer Part Number
DSPIC30F5015-30I/PT
Description
IC DSPIC MCU/DSP 66K 64TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F5015-30I/PT

Program Memory Type
FLASH
Program Memory Size
66KB (22K x 24)
Package / Case
64-TFQFP
Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number Of I /o
52
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
30 MHz
Number Of Programmable I/os
52
Data Ram Size
2 KB
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM330011
Minimum Operating Temperature
- 40 C
Package
64TQFP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
30 MHz
Operating Supply Voltage
3.3|5 V
Interface Type
CAN/I2C/SPI/UART
On-chip Adc
16-chx10-bit
Number Of Timers
5
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT64PT5 - SOCKET TRAN ICE 64MQFP/TQFPAC164319 - MODULE SKT MPLAB PM3 64TQFPAC30F008 - MODULE SKT FOR DSPIC30F 64TQFPDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
DSPIC30F501530IPT

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F5015-30I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F5015-30I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F5015-30I/PT
0
dsPIC30F5015/5016
14.1
A typical incremental (a.k.a. optical) encoder has three
outputs: Phase A, Phase B and an index pulse. These
signals are useful and often required in position and
speed control of ACIM and SR motors.
The two channels, Phase A (QEA) and Phase B (QEB),
have a unique relationship. If Phase A leads Phase B,
then the direction (of the motor) is deemed positive or
forward. If Phase A lags Phase B, then the direction (of
the motor) is deemed negative or reverse.
A third channel, termed index pulse, occurs once per
revolution and is used as a reference to establish an
absolute position. The index pulse coincides with
Phase A and Phase B, both low.
14.2
The 16-bit up/down counter counts up or down on
every count pulse, which is generated by the difference
of the Phase A and Phase B input signals. The counter
acts as an integrator, whose count value is proportional
to position. The direction of the count is determined by
the UPDN signal, which is generated by the
Quadrature Encoder Interface logic.
14.2.1
Position count error checking in the QEI is provided for
and indicated by the CNTERR bit (QEICON<15>). The
error checking only applies when the position counter
is configured for Reset on the Index Pulse modes
(QEIM<2:0> = 110 or 100). In these modes, the
contents of the POSCNT register are compared with
the values (0xFFFF or MAXCNT + 1, depending on
direction). If these values are detected, an error
condition is generated by setting the CNTERR bit and
a QEI count error interrupt is generated. The QEI count
error interrupt can be disabled by setting the CEID bit
(DFLTCON<8>). The position counter continues to
count encoder edges after an error has been detected.
The POSCNT register continues to count up/down until
a natural rollover/underflow. No interrupt is generated
for the natural rollover/underflow event. The CNTERR
bit is a read/write bit and reset in software by the user.
14.2.2
The Position Counter Reset Enable bit, POSRES
(QEICON<2>), controls whether the position counter is
reset when the index pulse is detected. This bit is only
applicable when QEIM<2:0> = 100 or 110.
DS70149D-page 90
Quadrature Encoder Interface
Logic
16-bit Up/Down Position Counter
Mode
POSITION COUNTER ERROR
CHECKING
POSITION COUNTER RESET
If the POSRES bit is set to ‘1’, then the position counter
is reset when the index pulse is detected. If the
POSRES bit is set to ‘0’, then the position counter is not
reset when the index pulse is detected. The position
counter will continue counting up or down, and will be
reset on the rollover or underflow condition.
The interrupt is still generated on the detection of the
index pulse and not on the position counter
overflow/underflow.
14.2.3
As mentioned in the previous section, the QEI logic
generates
relationship between Phase A and Phase B. In addition
to the output pin, the state of this internal UPDN signal
is supplied to a SFR bit, UPDN (QEICON<11>), as a
read-only bit. To place the state of this signal on an I/O
pin, the SFR bit, PCDOUT (QEICON<6>), must be ‘1’.
14.3
There are two measurement modes which are
supported and are termed x2 and x4. These modes are
selected by the QEIM<2:0> mode select bits located in
SFR QEICON<10:8>.
When control bits QEIM<2:0> = 100 or 101, the x2
Measurement mode is selected and the QEI logic only
looks at the Phase A input for the position counter
increment rate. Every rising and falling edge of the
Phase A signal causes the position counter to be
incremented or decremented. The Phase B signal is
still utilized for the determination of the counter
direction, just as in the x4 mode.
Within the x2 Measurement mode, there are two
variations of how the position counter is reset:
• Position counter reset by detection of index pulse,
• Position counter reset by match with MAXCNT,
When control bits QEIM<2:0> = 110 or 111, the x4
Measurement mode is selected and the QEI logic looks
at both edges of the Phase A and Phase B input
signals. Every edge of both signals causes the position
counter to increment or decrement.
Within the x4 Measurement mode, there are two
variations of how the position counter is reset:
• Position counter reset by detection of index pulse,
• Position counter reset by match with MAXCNT,
The x4 Measurement mode provides for finer
resolution data (more position counts) for determining
motor position.
QEIM<2:0> = 100.
QEIM<2:0> = 101.
QEIM<2:0> = 110.
QEIM<2:0> = 111.
Position Measurement Mode
COUNT DIRECTION STATUS
an
UPDN
© 2008 Microchip Technology Inc.
signal,
based
upon
the

Related parts for DSPIC30F5015-30I/PT