AFS600-PQG208 Actel, AFS600-PQG208 Datasheet - Page 96

FPGA - Field Programmable Gate Array 600K System Gates

AFS600-PQG208

Manufacturer Part Number
AFS600-PQG208
Description
FPGA - Field Programmable Gate Array 600K System Gates
Manufacturer
Actel
Datasheet

Specifications of AFS600-PQG208

Processor Series
AFS600
Core
IP Core
Maximum Operating Frequency
1098.9 MHz
Number Of Programmable I/os
95
Data Ram Size
110592
Supply Voltage (max)
1.575 V
Maximum Operating Temperature
+ 70 C
Minimum Operating Temperature
0 C
Development Tools By Supplier
AFS-Eval-Kit, AFS-BRD600, FlashPro 3, FlashPro Lite, Silicon-Explorer II, Silicon-Sculptor 3, SI-EX-TCA
Mounting Style
SMD/SMT
Supply Voltage (min)
1.425 V
Number Of Gates
600 K
Package / Case
PQFP-208
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AFS600-PQG208
Manufacturer:
Actel
Quantity:
135
Part Number:
AFS600-PQG208
Manufacturer:
Microsemi SoC
Quantity:
10 000
Part Number:
AFS600-PQG208I
Manufacturer:
Microsemi SoC
Quantity:
10 000
Device Architecture
Analog Block
2- 80
With the Fusion family, Actel has introduced the world's first mixed-mode FPGA solution. Supporting a
robust analog peripheral mix, Fusion devices will support a wide variety of applications. It is this Analog
Block that separates Fusion from all other FPGA solutions on the market today.
By combining both flash and high-speed CMOS processes in a single chip, these devices offer the best
of both worlds. The high-performance CMOS is used for building RAM resources. These high-
performance structures support device operation up to 350 MHz. Additionally, the advanced Actel
0.13 µm flash process incorporates high-voltage transistors and a high-isolation, triple-well process. Both
of these are suited for the flash-based programmable logic and nonvolatile memory structures.
High-voltage transistors support the integration of analog technology in several ways. They aid in noise
immunity so that the analog portions of the chip can be better isolated from the digital portions,
increasing analog accuracy. Because they support high voltages, Actel flash FPGAs can be connected
directly to high-voltage input signals, eliminating the need for external resistor divider networks, reducing
component count, and increasing accuracy. By supporting higher internal voltages, the Actel advanced
flash process enables high dynamic range on analog circuitry, increasing precision and signal–noise
ratio. Actel flash FPGAs also drive high-voltage outputs, eliminating the need for external level shifters
and drivers.
The unique triple-well process enables the integration of high-performance analog features with
increased noise immunity and better isolation. By increasing the efficiency of analog design, the triple-
well process also enables a smaller overall design size, reducing die size and cost.
The Analog Block consists of the Analog Quad I/O structure, RTC (for details refer to the
Counter System" section on page
single Analog Block macro, with which the user implements this functionality
The Analog Block needs to be reset/reinitialized after the core powers up or the device is programmed.
An external reset/initialize signal, which can come from the internal voltage regulator when it powers up,
must be applied.
2-33), ADC, and ACM. All of these elements are combined in the
R e visio n 1
(Figure
2-65).
"Real-Time

Related parts for AFS600-PQG208