SAM7X256 Atmel Corporation, SAM7X256 Datasheet - Page 514

no-image

SAM7X256

Manufacturer Part Number
SAM7X256
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM7X256

Flash (kbytes)
256 Kbytes
Pin Count
100
Max. Operating Frequency
55 MHz
Cpu
ARM7TDMI
Hardware Qtouch Acquisition
No
Max I/o Pins
62
Ext Interrupts
62
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
2
Twi (i2c)
1
Uart
3
Can
1
Ssc
1
Ethernet
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
384
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
64
Self Program Memory
NO
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
3.3
Operating Voltage (vcc)
3.0 to 3.6
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
3
Input Capture Channels
3
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
No
36.6.4.5
514
SAM7X512/256/128
Fault Confinement
To distinguish between temporary and permanent failures, every CAN controller has two error
counters: REC (Receive Error Counter) and TEC (Transmit Error Counter). The two counters
are incremented upon detected errors and are decremented upon correct transmissions or
receptions, respectively. Depending on the counter values, the state of the node changes: the
initial state of the CAN controller is Error Active, meaning that the controller can send Error
Active flags. The controller changes to the Error Passive state if there is an accumulation of
errors. If the CAN controller fails or if there is an extreme accumulation of errors, there is a state
transition to Bus Off.
Figure 36-7. Line Error Mode
An error active unit takes part in bus communication and sends an active error frame when the
CAN controller detects an error.
An error passive unit cannot send an active error frame. It takes part in bus communication, but
when an error is detected, a passive error frame is sent. Also, after a transmission, an error pas-
sive unit waits before initiating further transmission.
A bus off unit is not allowed to have any influence on the bus.
For fault confinement, two errors counters (TEC and REC) are implemented. These counters are
accessible via the CAN_ECR register. The state of the CAN controller is automatically updated
according to these counter values. If the CAN controller is in Error Active state, then the ERRA
bit is set in the CAN_SR register. The corresponding interrupt is pending while the interrupt is
not masked in the CAN_IMR register. If the CAN controller is in Error Passive Mode, then the
ERRP bit is set in the CAN_SR register and an interrupt remains pending while the ERRP bit is
set in the CAN_IMR register. If the CAN is in Bus Off Mode, then the BOFF bit is set in the
CAN_SR register. As for ERRP and ERRA, an interrupt is pending while the BOFF bit is set in
the CAN_IMR register.
• Acknowledgment error (AERR bit in the CAN_SR register): The transmitter checks the
Acknowledge Slot, which is transmitted by the transmitting node as a recessive bit, contains a
dominant bit. If this is the case, at least one other node has received the frame correctly. If
not, an Acknowledge Error has occurred and the transmitter will start in the next bit-time an
Error Frame transmission.
REC < 127
TEC < 127
and
PASSIVE
ERROR
ERROR
ACTIVE
TEC > 255
Init
REC > 127
TEC >127
or
128 occurences of 11 consecutive recessive bits
BUS OFF
CAN controller reset
6120I–ATARM–06-Apr-11
or

Related parts for SAM7X256