DSPIC30F6010 MICROCHIP [Microchip Technology], DSPIC30F6010 Datasheet - Page 99

no-image

DSPIC30F6010

Manufacturer Part Number
DSPIC30F6010
Description
High-Performance Digital Signal Controllers
Manufacturer
MICROCHIP [Microchip Technology]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F6010-20E/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6010-20I/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6010-20I/PF
Manufacturer:
MICROCHI
Quantity:
20 000
Part Number:
DSPIC30F6010-30I/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6010-30I/PF
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F6010A-20E/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6010A-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6010A-20E/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F6010A-20I/PF
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F6010A-20I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F6010A-30I/
Manufacturer:
TI
Quantity:
7 880
Part Number:
DSPIC30F6010A-30I/PF
Manufacturer:
AD
Quantity:
2 100
Part Number:
DSPIC30F6010A-30I/PF
0
Part Number:
DSPIC30F6010A-30I/PT
0
16.2
The module supports a basic framed SPI protocol in
Master or Slave mode. The control bit FRMEN enables
framed SPI support and causes the SSx pin to perform
the frame synchronization pulse (FSYNC) function.
The control bit SPIFSD determines whether the SSx
pin is an input or an output (i.e., whether the module
receives or generates the frame synchronization
pulse). The frame pulse is an active high pulse for a
single SPI clock cycle. When frame synchronization is
enabled, the data transmission starts only on the
subsequent transmit edge of the SPI clock.
16.3
The SSx pin allows a Synchronous Slave mode. The
SPI must be configured in SPI Slave mode, with SSx
pin control enabled (SSEN = 1). When the SSx pin is
low, transmission and reception are enabled, and the
SDOx pin is driven. When SSx pin goes high, the SDOx
pin is no longer driven. Also, the SPI module is re-
synchronized, and all counters/control circuitry are
reset. Therefore, when the SSx pin is asserted low
again, transmission/reception will begin at the MS bit,
even if SSx had been de-asserted in the middle of a
transmit/receive.
 2004 Microchip Technology Inc.
Framed SPI Support
Slave Select Synchronization
Preliminary
16.4
During Sleep mode, the SPI module is shut-down. If
the CPU enters Sleep mode while an SPI transaction
is in progress, then the transmission and reception is
aborted.
The transmitter and receiver will stop in Sleep mode.
However, register contents are not affected by
entering or exiting Sleep mode.
16.5
When the device enters Idle mode, all clock sources
remain functional. The SPISIDL bit (SPIxSTAT<13>)
selects if the SPI module will stop or continue on Idle.
If SPISIDL = 0, the module will continue to operate
when the CPU enters Idle mode. If SPISIDL = 1, the
module will stop when the CPU enters Idle mode.
SPI Operation During CPU Sleep
Mode
SPI Operation During CPU Idle
Mode
dsPIC30F6010
DS70119D-page 97

Related parts for DSPIC30F6010