MC68332ACAG16 Freescale Semiconductor, MC68332ACAG16 Datasheet - Page 60

no-image

MC68332ACAG16

Manufacturer Part Number
MC68332ACAG16
Description
IC MCU 32BIT 16MHZ 144-LQFP
Manufacturer
Freescale Semiconductor
Series
M683xxr
Datasheets

Specifications of MC68332ACAG16

Core Processor
CPU32
Core Size
32-Bit
Speed
16MHz
Connectivity
EBI/EMI, SCI, SPI, UART/USART
Peripherals
POR, PWM, WDT
Number Of I /o
15
Program Memory Type
ROMless
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
144-LQFP
Processor Series
M683xx
Core
CPU32
Data Bus Width
32 bit
Maximum Clock Frequency
16 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Interface Type
SCI, SPI, UART
Minimum Operating Temperature
- 40 C
Controller Family/series
68K
No. Of I/o's
15
Ram Memory Size
2KB
Cpu Speed
16MHz
No. Of Timers
1
Embedded Interface Type
QSPI, SCI, UART
Digital Ic Case Style
LQFP
Rohs Compliant
Yes
Data Ram Size
2 KB
Number Of Programmable I/os
15
Number Of Timers
16
Cpu Family
68K/M683xx
Device Core
ColdFire
Device Core Size
32b
Frequency (max)
16MHz
Program Memory Size
Not Required
Total Internal Ram Size
2KB
# I/os (max)
15
Number Of Timers - General Purpose
16
Operating Supply Voltage (typ)
5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
4.5V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
144
Package Type
LQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Program Memory Size
-
Data Converters
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68332ACAG16
Manufacturer:
Freescale Semiconductor
Quantity:
135
Part Number:
MC68332ACAG16
Manufacturer:
Freescale
Quantity:
319
Part Number:
MC68332ACAG16
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
4.4.1.9 Bus Error Signal
4.4.1.10 Halt Signal
4.4.1.11 Autovector Signal
4.4.2 Dynamic Bus Sizing
4-20
The bus error signal (BERR) is asserted when a bus cycle is not properly terminated
by DSACK or AVEC assertion. BERR can also be asserted at the same time as
DSACK, provided the appropriate timing requirements are met. Refer to 4.5.5 Bus Ex-
ception Control Cycles for more information.
The internal bus monitor can generate the BERR signal for internal and internal-to-ex-
ternal transfers. An external bus master must provide its own BERR generation and
drive the BERR pin, because the internal BERR monitor has no information about
transfers initiated by an external bus master. Refer to 4.5.6 External Bus Arbitration
for more information.
The halt signa (HALT) can be asserted by an external device for debugging purposes
to cause single bus cycle operation or (in combination with BERR) a retry of a bus cy-
cle in error. The HALT signal affects external bus cycles only, so a program not requir-
ing the use of external bus may continue executing, unaffected by the HALT signal.
When the MCU completes a bus cycle with the HALT signal asserted, DATA[15:0] is
placed in the high-impedance state, and bus control signals are driven inactive; the ad-
dress, function code, size, and read/write signals remain in the same state. If HALT is
still asserted once bus mastership is returned to the MCU, the address, function code,
size, and read/write signals are again driven to their previous states. The MCU does
not service interrupt requests while it is halted. Refer to 4.5.5 Bus Exception Control
Cycles for further information.
The autovector signal (AVEC) can be used to terminate external interrupt acknowl-
edge cycles. Assertion of AVEC causes the CPU32 to generate vector numbers to lo-
cate an interrupt handler routine. If it is continuously asserted, autovectors are
generated for all external interrupt requests. AVEC is ignored during all other bus cy-
cles. Refer to 4.7 Interrupts for more information. AVEC for external interrupt re-
quests can also be supplied internally by chip-select logic. Refer to 4.8 Chip Selects
for more information. The autovector function is disabled when there is an external bus
master. Refer to 4.5.6 External Bus Arbitration for more information.
The MCU dynamically interprets the port size of an addressed device during each bus
cycle, allowing operand transfers to or from 8-bit and 16-bit ports.
During an operand transfer cycle, an external device signals its port size and indicates
completion of the bus cycle to the MCU through the use of the DSACK inputs, as
shown in Table 4-12. Chip-select logic can generate data and size acknowledge sig-
nals for an external device. Refer to 4.8 Chip Selects for further information.
Freescale Semiconductor, Inc.
For More Information On This Product,
SYSTEM INTEGRATION MODULE
Go to: www.freescale.com
USER’S MANUAL
MC68332

Related parts for MC68332ACAG16