EP1S10F484I6 Altera, EP1S10F484I6 Datasheet - Page 336

IC STRATIX FPGA 10K LE 484-FBGA

EP1S10F484I6

Manufacturer Part Number
EP1S10F484I6
Description
IC STRATIX FPGA 10K LE 484-FBGA
Manufacturer
Altera
Series
Stratix®r
Datasheets

Specifications of EP1S10F484I6

Number Of Logic Elements/cells
10570
Number Of Labs/clbs
1057
Total Ram Bits
920448
Number Of I /o
335
Voltage - Supply
1.425 V ~ 1.575 V
Mounting Type
Surface Mount
Operating Temperature
0°C ~ 85°C
Package / Case
484-FBGA
Family Name
Stratix
Number Of Logic Blocks/elements
10570
# I/os (max)
335
Frequency (max)
450.05MHz
Process Technology
0.13um (CMOS)
Operating Supply Voltage (typ)
1.5V
Logic Cells
10570
Ram Bits
920448
Operating Supply Voltage (min)
1.425V
Operating Supply Voltage (max)
1.575V
Operating Temp Range
-40C to 100C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
484
Package Type
FC-FBGA
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Number Of Gates
-
Lead Free Status / Rohs Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP1S10F484I6
Manufacturer:
ALTERA
Quantity:
3 000
Part Number:
EP1S10F484I6
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP1S10F484I6
Manufacturer:
ALTERA
0
Part Number:
EP1S10F484I6
0
Part Number:
EP1S10F484I6N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP1S10F484I6N
Manufacturer:
XILINX
0
Part Number:
EP1S10F484I6N
Manufacturer:
ALTERA
0
Enhanced PLLs
Figure 1–14. Spread-Spectrum Signal Energy versus Non-Spread-Spectrum Signal Energy
1–26
Stratix Device Handbook, Volume 2
Amplitude
(dB)
Spread-spectrum technology modulates the target frequency over a small
range. For example, if a 100-MHz signal has a 0.5% down-spread
modulation, then the frequency is swept from 99.5 to 100 MHz.
Figure 1–14
spread-spectrum signal as opposed to a non-spread-spectrum signal. It is
apparent that instead of concentrating the energy at the target frequency,
the energy is re-distributed across a wider band of frequencies, which
reduces peak energy.
Not only is there a reduction in the fundamental peak EMI components,
but there is also a reduction in EMI of the higher order harmonics. Since
some regulations focus on peak EMI emissions, rather than average EMI
emissions, spread-spectrum technology is a valuable method of EMI
reduction.
Spread-spectrum technology would benefit a design with high EMI
emissions and/or strict EMI requirements. Device-generated EMI is
dependent on frequency, output voltage swing amplitude, and slew rate.
For example, a design using LVDS already has low EMI emissions
Spread-Spectrum Signal
Non-Spread-Spectrum Signal
gives a graphical representation of the energy present in a
δ = 0.5%
Frequency
(MHz)
Δ = ~5 dB
Altera Corporation
July 2005

Related parts for EP1S10F484I6