LPC3230FET296/01,5 NXP Semiconductors, LPC3230FET296/01,5 Datasheet - Page 22

IC ARM9 MCU 256K 296-TFBGA

LPC3230FET296/01,5

Manufacturer Part Number
LPC3230FET296/01,5
Description
IC ARM9 MCU 256K 296-TFBGA
Manufacturer
NXP Semiconductors
Series
LPC32x0r
Datasheets

Specifications of LPC3230FET296/01,5

Package / Case
296-TFBGA
Core Processor
ARM9
Core Size
16/32-Bit
Speed
266MHz
Connectivity
EBI/EMI, I²C, IrDA, Microwire, SPI, SSI, SSP, UART/USART, USB OTG
Peripherals
DMA, I²S, LCD, Motor Control PWM, PWM, WDT
Number Of I /o
51
Program Memory Type
ROMless
Ram Size
256K x 8
Voltage - Supply (vcc/vdd)
0.9 V ~ 3.6 V
Data Converters
A/D 3x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
LPC32
Core
ARM926EJ-S
Data Bus Width
32 bit
Data Ram Size
256 KB
Interface Type
EMC
Maximum Clock Frequency
266 MHz
Number Of Timers
6
Operating Supply Voltage
1.31 V to 1.39 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 3 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Program Memory Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
568-4964
935290764551

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC3230FET296/01,5
Manufacturer:
NXP Semiconductors
Quantity:
10 000
NXP Semiconductors
LPC3220_30_40_50_1
Preliminary data sheet
7.1.3.2 Embedded trace buffer
7.2 AHB matrix
The Embedded Trace Module (ETM) is connected directly to the ARM core. It compresses
the trace information and exports it through a narrow trace port. An internal Embedded
Trace Buffer (ETB) of 2048
debugger control. Data from the ETB is recovered by the debug software through the
JTAG port.
The trace contains information about when the ARM core switches between states.
Instruction shows the flow of execution of the processor and provides a list of all the
instructions that were executed. Instruction trace is significantly compressed by only
broadcasting branch addresses as well as a set of status signals that indicate the pipeline
status on a cycle by cycle basis. For data accesses either data or address or both can be
traced.
The LPC3220/30/40/50 has a multi-layer AHB matrix for inter-block communication. AHB
is an ARM defined high-speed bus, which is part of the ARM bus architecture. AHB is a
high-bandwidth low-latency bus that supports multi-master arbitration and a bus
grant/request mechanism. For systems that have only one (CPU), or two (CPU and DMA)
bus masters a simple AHB works well. However, if a system requires multiple bus masters
and the CPU needs access to external memory, a single AHB bus can cause a bottleneck.
To increase performance, the LPC3220/30/40/50 uses an expanded AHB architecture
known as Multi-layer AHB. A Multi-layer AHB replaces the request/grant and arbitration
mechanism used in a simple AHB with an interconnect matrix that moves arbitration out
toward the slave devices. Thus, if a CPU and a DMA controller want access to the same
memory, the interconnect matrix arbitrates between the two when granting access to the
memory. This advanced architecture allows simultaneous access by bus masters to
different resources with an increase in arbitration complexity. In this architectural
implementation, removing guaranteed central arbitration and allowing more than one bus
master to be active at the same time provides better overall microcontroller performance.
In the LPC3220/30/40/50, the multi-Layer AHB system has a separate bus for each of
seven AHB Masters:
There are no arbitration delays unless two masters attempt to access the same slave at
the same time.
CPU data bus
CPU instruction bus
General purpose DMA Master 0
General purpose DMA Master 1
Ethernet controller
USB controller
LCD controller
Rev. 01 — 6 February 2009
24 bits captures the trace information under software
LPC3220/30/40/50
16/32-bit ARM microcontrollers
© NXP B.V. 2009. All rights reserved.
22 of 73

Related parts for LPC3230FET296/01,5