ATMEGA64A-AU Atmel, ATMEGA64A-AU Datasheet - Page 203

MCU AVR 64K ISP FLASH 64-TQFP

ATMEGA64A-AU

Manufacturer Part Number
ATMEGA64A-AU
Description
MCU AVR 64K ISP FLASH 64-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA64A-AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Package
64TQFP
Device Core
AVR
Family Name
ATmega
Maximum Speed
16 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
53
Interface Type
SPI/USART
On-chip Adc
8-chx10-bit
Number Of Timers
4
Processor Series
ATMEGA64x
Core
AVR8
Data Ram Size
4 KB
Maximum Clock Frequency
16 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
Cpu Family
ATmega
Device Core Size
8b
Frequency (max)
16MHz
Total Internal Ram Size
4KB
# I/os (max)
53
Number Of Timers - General Purpose
4
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
64
Package Type
TQFP
For Use With
770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA64A-AU
Manufacturer:
ATMEL
Quantity:
4 500
Part Number:
ATMEGA64A-AU
Manufacturer:
Atmel
Quantity:
900
Part Number:
ATMEGA64A-AU
Manufacturer:
ATMEL85
Quantity:
900
Part Number:
ATMEGA64A-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA64A-AU
Manufacturer:
ATMEL
Quantity:
8 000
Part Number:
ATMEGA64A-AU
Manufacturer:
AT
Quantity:
20 000
Company:
Part Number:
ATMEGA64A-AU
Quantity:
1 920
Company:
Part Number:
ATMEGA64A-AU
Quantity:
1 850
Company:
Part Number:
ATMEGA64A-AU
Quantity:
1 800
Company:
Part Number:
ATMEGA64A-AU
Quantity:
267
Company:
Part Number:
ATMEGA64A-AU
Quantity:
257
Part Number:
ATMEGA64A-AUR
Manufacturer:
Atmel
Quantity:
10 000
21.2.5
21.3
8160C–AVR–07/09
Two-wire Serial Interface Bus Definition
Control Unit
The Address Match unit is able to compare addresses even when the AVR MCU is in sleep
mode, enabling the MCU to wake-up if addressed by a Master.
The Control unit monitors the TWI bus and generates responses corresponding to settings in the
TWI Control Register (TWCR). When an event requiring the attention of the application occurs
on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Sta-
tus Register (TWSR) is updated with a status code identifying the event. The TWSR only
contains relevant status information when the TWI interrupt flag is asserted. At all other times,
the TWSR contains a special status code indicating that no relevant status information is avail-
able. As long as the TWINT flag is set, the SCL line is held low. This allows the application
software to complete its tasks before allowing the TWI transmission to continue.
The TWINT flag is set in the following situations:
When a bus error has occurred due to an illegal START or STOP condition.
The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.
Figure 21-2. TWI Bus Interconnection
• After the TWI has transmitted a START/REPEATED START condition.
• After the TWI has transmitted SLA+R/W.
• After the TWI has transmitted an address byte.
• After the TWI has lost arbitration.
• After the TWI has been addressed by own slave address or general call.
• After the TWI has received a data byte.
• After a STOP or REPEATED START has been received while still addressed as a Slave.
SDA
SCL
Device 1
Device 2
Device 3
........
Device n
V
CC
R1
ATmega64A
R2
203

Related parts for ATMEGA64A-AU