ATMEGA64A-AU Atmel, ATMEGA64A-AU Datasheet - Page 382

MCU AVR 64K ISP FLASH 64-TQFP

ATMEGA64A-AU

Manufacturer Part Number
ATMEGA64A-AU
Description
MCU AVR 64K ISP FLASH 64-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA64A-AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Package
64TQFP
Device Core
AVR
Family Name
ATmega
Maximum Speed
16 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
53
Interface Type
SPI/USART
On-chip Adc
8-chx10-bit
Number Of Timers
4
Processor Series
ATMEGA64x
Core
AVR8
Data Ram Size
4 KB
Maximum Clock Frequency
16 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
Cpu Family
ATmega
Device Core Size
8b
Frequency (max)
16MHz
Total Internal Ram Size
4KB
# I/os (max)
53
Number Of Timers - General Purpose
4
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
64
Package Type
TQFP
For Use With
770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA64A-AU
Manufacturer:
ATMEL
Quantity:
4 500
Part Number:
ATMEGA64A-AU
Manufacturer:
Atmel
Quantity:
900
Part Number:
ATMEGA64A-AU
Manufacturer:
ATMEL85
Quantity:
900
Part Number:
ATMEGA64A-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA64A-AU
Manufacturer:
ATMEL
Quantity:
8 000
Part Number:
ATMEGA64A-AU
Manufacturer:
AT
Quantity:
20 000
Company:
Part Number:
ATMEGA64A-AU
Quantity:
1 920
Company:
Part Number:
ATMEGA64A-AU
Quantity:
1 850
Company:
Part Number:
ATMEGA64A-AU
Quantity:
1 800
Company:
Part Number:
ATMEGA64A-AU
Quantity:
267
Company:
Part Number:
ATMEGA64A-AU
Quantity:
257
Part Number:
ATMEGA64A-AUR
Manufacturer:
Atmel
Quantity:
10 000
34. Errata
34.1
8160C–AVR–07/09
ATmega64A, rev. D
The revision letter in this section refers to the revision of the ATmega64A device.
1. First Analog Comparator conversion may be delayed
2. Interrupts may be lost when writing the timer registers in the asynchronous timer
3. Stabilizing time needed when changing XDIV Register
First Analog Comparator conversion may be delayed
Interrupts may be lost when writing the timer registers in the asynchronous timer
Stabilizing time needed when changing XDIV Register
Stabilizing time needed when changing OSCCAL Register
IDCODE masks data from TDI input
Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request
If the device is powered by a slow rising V
take longer than expected on some devices.
Problem Fix/Workaround
When the device has been powered or reset, disable then enable theAnalog Comparator
before the first conversion.
The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).
After increasing the source clock frequency more than 2% with settings in the XDIV register,
the device may execute some of the subsequent instructions incorrectly.
Problem Fix / Workaround
The NOP instruction will always be executed correctly also right after a frequency change.
Thus, the next 8 instructions after the change should be NOP instructions. To ensure this,
follow this procedure:
1.Clear the I bit in the SREG Register.
2.Set the new pre-scaling factor in XDIV register.
3.Execute 8 NOP instructions
4.Set the I bit in SREG
This will ensure that all subsequent instructions will execute correctly.
Assembly Code Example:
CLI
OUT
NOP
NOP
NOP
NOP
NOP
NOP
Problem Fix / Workaround
XDIV, temp
; clear global interrupt enable
; set new prescale value
; no operation
; no operation
; no operation
; no operation
; no operation
; no operation
CC
, the first Analog Comparator conversion will
ATmega64A
382

Related parts for ATMEGA64A-AU