PIC18F4320-I/PT Microchip Technology, PIC18F4320-I/PT Datasheet - Page 32

IC MCU FLASH 4KX16 A/D 44TQFP

PIC18F4320-I/PT

Manufacturer Part Number
PIC18F4320-I/PT
Description
IC MCU FLASH 4KX16 A/D 44TQFP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F4320-I/PT

Core Size
8-Bit
Program Memory Size
8KB (4K x 16)
Core Processor
PIC
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number Of I /o
36
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 13x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-TQFP, 44-VQFP
Controller Family/series
PIC18
No. Of I/o's
36
Eeprom Memory Size
256Byte
Ram Memory Size
512Byte
Cpu Speed
40MHz
No. Of Timers
4
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT44PT3 - SOCKET TRAN ICE 44MQFP/TQFPAC164305 - MODULE SKT FOR PM3 44TQFP444-1001 - DEMO BOARD FOR PICMICRO MCUAC164020 - MODULE SKT PROMATEII 44TQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F4320-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F4320-I/PT
Manufacturer:
MIC
Quantity:
20 000
Part Number:
PIC18F4320-I/PT229
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
PIC18F2220/2320/4220/4320
3.1.2
In general, entry, exit and switching between power-
managed clock sources requires clock source
switching. In each case, the sequence of events is the
same.
Any change in the power-managed mode begins with
loading the OSCCON register and executing a SLEEP
instruction. The SCS1:SCS0 bits select one of three
power-managed clock sources; the primary clock (as
defined in Configuration Register 1H), the secondary
clock (the Timer1 oscillator) and the internal oscillator
block (used in RC modes). Modifying the SCS bits will
have no effect until a SLEEP instruction is executed.
Entry to the power-managed mode is triggered by the
execution of a SLEEP instruction.
Figure 3-5 shows how the system is clocked while
switching from the primary clock to the Timer1 oscilla-
tor. When the SLEEP instruction is executed, clocks to
the device are stopped at the beginning of the next
instruction cycle. Eight clock cycles from the new clock
source are counted to synchronize with the new clock
source. After eight clock pulses from the new clock
source are counted, clocks from the new clock source
resume clocking the system. The actual length of the
pause is between eight and nine clock periods from the
new clock source. This ensures that the new clock
source is stable and that its pulse width will not be less
than the shortest pulse width of the two clock sources.
Three bits indicate the current clock source: OSTS and
IOFS in the OSCCON register and T1RUN in the
T1CON register. Only one of these bits will be set while
in a power-managed mode other than PRI_RUN. When
the OSTS bit is set, the primary clock is providing the
system clock. When the IOFS bit is set, the INTOSC
output is providing a stable 8 MHz clock source and is
providing the system clock. When the T1RUN bit is set,
the Timer1 oscillator is providing the system clock. If
none of these bits are set, then either the INTRC clock
source is clocking the system or the INTOSC source is
not yet stable.
If the internal oscillator block is configured as the pri-
mary clock source in Configuration Register 1H, then
both the OSTS and IOFS bits may be set when in
PRI_RUN or PRI_IDLE modes. This indicates that the
primary clock (INTOSC output) is generating a stable
8 MHz output. Entering a power-managed RC mode
(same frequency) would clear the OSTS bit.
DS39599G-page 30
ENTERING POWER-MANAGED
MODES
3.1.3
The power-managed mode that is invoked with the
SLEEP instruction is determined by the settings of the
IDLEN and SCS bits at the time the instruction is exe-
cuted. If another SLEEP instruction is executed, the
device will enter the power-managed mode specified
by these same bits at that time. If the bits have
changed, the device will enter the new power-managed
mode specified by the new bit settings.
3.1.4
Clock source selection for the Run modes is identical to
the corresponding Idle modes. When a SLEEP instruc-
tion is executed, the SCS bits in the OSCCON register
are used to switch to a different clock source. As a
result, if there is a change of clock source at the time a
SLEEP instruction is executed, a clock switch will occur.
In Idle modes, the CPU is not clocked and is not run-
ning. In Run modes, the CPU is clocked and executing
code. This difference modifies the operation of the
WDT when it times out. In Idle modes, a WDT time-out
results in a wake from power-managed modes. In Run
modes, a WDT time-out results in a WDT Reset (see
Table 3-2).
During a wake-up from an Idle mode, the CPU starts
executing code by entering the corresponding Run
mode until the primary clock becomes ready. When the
primary clock becomes ready, the clock source is auto-
matically switched to the primary clock. The IDLEN and
SCS bits are unchanged during and after the wake-up.
Figure 3-2 shows how the system is clocked during the
clock source switch. The example assumes the device
was in SEC_IDLE or SEC_RUN mode when a wake is
triggered (the primary clock was configured in HSPLL
mode).
Note 1: Caution should be used when modifying a
2: Executing a SLEEP instruction does not
MULTIPLE SLEEP COMMANDS
COMPARISONS BETWEEN RUN
AND IDLE MODES
single IRCF bit. If V
possible to select a higher clock speed
than is supported by the low V
Improper device operation may result if
the V
necessarily place the device into Sleep
mode; executing a SLEEP instruction is
simply a trigger to place the controller into
a power-managed mode selected by the
OSCCON register, one of which is Sleep
mode.
DD
/F
OSC
© 2007 Microchip Technology Inc.
specifications are violated.
DD
is less than 3V, it is
DD
.

Related parts for PIC18F4320-I/PT