ATmega169P Atmel Corporation, ATmega169P Datasheet - Page 125

no-image

ATmega169P

Manufacturer Part Number
ATmega169P
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega169P

Flash (kbytes)
16 Kbytes
Pin Count
64
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
54
Ext Interrupts
17
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Segment Lcd
100
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega169P-15AT
Manufacturer:
PANASONIC
Quantity:
301
Part Number:
ATmega169P-15AT
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega169P-15AT
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega169P-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega169P-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega169P-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega169PA-AN
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega169PA-ANR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega169PA-MU
Manufacturer:
ATMEL
Quantity:
31
Part Number:
ATmega169PAAU
Manufacturer:
INF
Quantity:
4 275
Part Number:
ATmega169PV-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega169PV-8MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega169PV-8MUR
Manufacturer:
LISHENG
Quantity:
1 000
8018P–AVR–08/10
Figure 15-9. Phase and Frequency Correct PWM Mode, Timing Diagram
The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x
Registers are updated with the double buffer value (at BOTTOM). When either OCR1A or ICR1
is used for defining the TOP value, the OC1A or ICF1 Flag set when TCNT1 has reached TOP.
The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.
When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
As
cal in all periods. Since the OCR1x Registers are updated at BOTTOM, the length of the rising
and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore
frequency correct.
Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed by changing the TOP value, using the OCR1A as
TOP is clearly a better choice due to its double buffer feature.
In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-
forms on the OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted PWM and
an inverted PWM output can be generated by setting the COM1x1:0 to three (See
page
port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing)
the OC1x Register at the compare match between OCR1x and TCNT1 when the counter incre-
ments, and clearing (or setting) the OC1x Register at compare match between OCR1x and
TCNT1 when the counter decrements. The PWM frequency for the output when using phase
and frequency correct PWM can be calculated by the following equation:
The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).
Figure 15-9
TCNTn
OCnx
OCnx
Period
129). The actual OC1x value will only be visible on the port pin if the data direction for the
shows the output generated is, in contrast to the phase correct mode, symmetri-
1
f
OCnxPFCPWM
2
3
=
--------------------------- -
2 N TOP
f
clk_I/O
4
ATmega169P
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)
(COMnx1:0 = 2)
(COMnx1:0 = 3)
OCRnx/TOP Updateand
TOVn Interrupt Flag Set
(Interrupt on Bottom)
Table 15-3 on
125

Related parts for ATmega169P