PIC18F27J13-I/SS Microchip Technology, PIC18F27J13-I/SS Datasheet - Page 405

no-image

PIC18F27J13-I/SS

Manufacturer Part Number
PIC18F27J13-I/SS
Description
IC PIC MCU 128KB FLASH 28SSOP
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F27J13-I/SS

Core Size
8-Bit
Program Memory Size
128KB (64K x 16)
Core Processor
PIC
Speed
48MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
22
Program Memory Type
FLASH
Ram Size
3.8K x 8
Voltage - Supply (vcc/vdd)
2.15 V ~ 3.6 V
Data Converters
A/D 10x10b/12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Controller Family/series
PIC18
Cpu Speed
48MHz
Digital Ic Case Style
SSOP
Supply Voltage Range
1.8V To 5.5V
Embedded Interface Type
I2C, SPI, USART
Rohs Compliant
Yes
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
I2C, SPI, EUSART
Maximum Clock Frequency
48 MHz
Number Of Programmable I/os
19
Number Of Timers
8
Operating Supply Voltage
2 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
DM164128, DM180021, DM183026-2, DV164131, MA180030, DM183022, DM183032, DV164136, MA180024
Minimum Operating Temperature
- 40 C
On-chip Adc
12 bit, 10 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
MA180030 - BOARD DEMO PIC18F47J13 FS USBMA180029 - BOARD DEMO PIC18F47J53 FS USB
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
26.4
There are two separate methods of measuring capaci-
tance with the CTMU. The first is the absolute method,
in which the actual capacitance value is desired. The
second is the relative method, in which the actual
capacitance is not needed, rather an indication of a
change in capacitance is required.
26.4.1
For absolute capacitance measurements, both the
current and capacitance calibration steps found in
Section 26.3 “Calibrating the CTMU Module”
should be followed. Capacitance measurements are
then performed using the following steps:
1.
2.
3.
4.
5.
6.
7.
8.
 2010 Microchip Technology Inc.
Initialize the A/D Converter.
Initialize the CTMU.
Set EDG1STAT.
Wait for a fixed delay, T.
Clear EDG1STAT.
Perform an A/D conversion.
Calculate the total capacitance, C
where I is known from the current source
measurement step (see Section 26.3.1 “Current
Source Calibration”), T is a fixed delay and V is
measured by performing an A/D conversion.
Subtract the stray and A/D capacitance
(C
Calibration”) from C
measured capacitance.
OFFSET
Measuring Capacitance with the
CTMU
ABSOLUTE CAPACITANCE
MEASUREMENT
from Section 26.3.2 “Capacitance
TOTAL
to determine the
TOTAL
= (I * T)/V,
Preliminary
PIC18F47J13 FAMILY
26.4.2
An application may not require precise capacitance
measurements. For example, when detecting a valid
press of a capacitance-based touch sense button,
detecting a relative change of capacitance is of inter-
est. In this type of application, when the touch sense
pad is not being pressed, the total capacitance is the
capacitance of the combination of the board traces, the
A/D Converter, etc. A larger voltage will be measured
by the A/D Converter. When the touch sense pad is
pressed, the total capacitance is larger due to the addi-
tion of the capacitance of the human body, therefore, a
smaller voltage will be measured by the A/D Converter.
Detecting capacitance changes is easily accomplished
with the CTMU using these steps:
1.
2.
3.
4.
5.
The voltage measured by performing the A/D conver-
sion is an indication of the relative capacitance. Note
that in this case, no calibration of the current source or
circuit capacitance measurement is needed. See
Example 26-4 for a sample software routine for a
capacitive touch switch.
Initialize the A/D Converter and the CTMU.
Set EDG1STAT.
Wait for a fixed delay.
Clear EDG1STAT.
Perform an A/D conversion.
CAPACITIVE TOUCH SENSE USING
RELATIVE CHARGE
MEASUREMENT
DS39974A-page 405

Related parts for PIC18F27J13-I/SS