DSPIC33EP512MU810T-I/PT Microchip Technology, DSPIC33EP512MU810T-I/PT Datasheet - Page 121

no-image

DSPIC33EP512MU810T-I/PT

Manufacturer Part Number
DSPIC33EP512MU810T-I/PT
Description
100 PINS, 512KB Flash, 52KB RAM, 60 MHz, USB, 2xCAN, 15 DMA 100 TQFP 12x12x1mm T
Manufacturer
Microchip Technology
Series
dsPIC™ 33EPr
Datasheet

Specifications of DSPIC33EP512MU810T-I/PT

Core Processor
dsPIC
Core Size
16-Bit
Speed
60 MIPs
Connectivity
CAN, I²C, IrDA, LIN, QEI, SPI, UART/USART, USB OTG
Peripherals
Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number Of I /o
83
Program Memory Size
512KB (170K x 24)
Program Memory Type
FLASH
Eeprom Size
-
Ram Size
24K x 16
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 32x10b/12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-TQFP
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC33EP512MU810T-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
4.4.3
Modulo Addressing can be applied to the Effective
Address (EA) calculation associated with any W
register. Address boundaries check for addresses
equal to:
• The upper boundary addresses for incrementing
• The lower boundary addresses for decrementing
It is important to realize that the address boundaries
check for addresses less than or greater than the upper
(for incrementing buffers) and lower (for decrementing
buffers) boundary addresses (not just equal to).
Address changes can, therefore, jump beyond
boundaries and still be adjusted correctly.
4.5
Bit-Reversed Addressing mode is intended to simplify
data reordering for radix-2 FFT algorithms. It is
supported by the X AGU for data writes only.
The modifier, which can be a constant value or register
contents, is regarded as having its bit order reversed.
The address source and destination are kept in normal
order. Thus, the only operand requiring reversal is the
modifier.
4.5.1
Bit-Reversed Addressing mode is enabled in any of
these situations:
• BWM bits (W register selection) in the MODCON
• The BREN bit is set in the XBREV register
• The addressing mode used is Register Indirect
 2009-2011 Microchip Technology Inc.
buffers
buffers
Note:
register are any value other than ‘15’ (the stack
cannot be accessed using Bit-Reversed
Addressing)
with Pre-Increment or Post-Increment
dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814
Bit-Reversed Addressing
(dsPIC33EPXXXMU806/810/814
Devices Only)
MODULO ADDRESSING
APPLICABILITY
The modulo corrected effective address is
written back to the register only when Pre-
Modify or Post-Modify Addressing mode is
used to compute the effective address.
When an address offset (such as [W7 +
W2]) is used, Modulo Address correction
is performed but the contents of the
register remain unchanged.
BIT-REVERSED ADDRESSING
IMPLEMENTATION
Preliminary
If the length of a bit-reversed buffer is M = 2
the last ‘N’ bits of the data buffer start address must
be zeros.
XB<14:0> is the Bit-Reversed Address modifier, or
‘pivot point,’ which is typically a constant. In the case of
an FFT computation, its value is equal to half of the FFT
data buffer size.
When enabled, Bit-Reversed Addressing is executed
only for Register Indirect with Pre-Increment or Post-
Increment Addressing and word-sized data writes. It
does not function for any other addressing mode or for
byte-sized data, and normal addresses are generated
instead. When Bit-Reversed Addressing is active, the
W Address Pointer is always added to the address
modifier (XB), and the offset associated with the
Register Indirect Addressing mode is ignored. In
addition, as word-sized data is a requirement, the LSb
of the EA is ignored (and always clear).
If Bit-Reversed Addressing has already been enabled
by setting the BREN (XBREV<15>) bit, a write to the
XBREV register should not be immediately followed by
an indirect read operation using the W register that has
been designated as the bit-reversed pointer.
Note:
Note:
All bit-reversed EA calculations assume
word-sized data (LSb of every EA is
always clear). The XB value is scaled
accordingly to generate compatible (byte)
addresses.
Modulo Addressing and Bit-Reversed
Addressing
together. If an application attempts to do
so, Bit-Reversed Addressing assumes
priority when active for the X WAGU and X
WAGU, Modulo Addressing is disabled.
However, Modulo Addressing continues to
function in the X RAGU.
should
not
DS70616E-page 121
be
enabled
N
bytes,

Related parts for DSPIC33EP512MU810T-I/PT