ADE7878ACPZ Analog Devices Inc, ADE7878ACPZ Datasheet - Page 62

no-image

ADE7878ACPZ

Manufacturer Part Number
ADE7878ACPZ
Description
IC ENERGY METERING 3PH 40LFCSP
Manufacturer
Analog Devices Inc
Datasheets

Specifications of ADE7878ACPZ

Input Impedance
400 KOhm
Measurement Error
0.1%
Voltage - I/o High
2.4V
Voltage - I/o Low
0.4V
Current - Supply
22mA
Voltage - Supply
3 V ~ 3.6 V
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
40-WFQFN, CSP Exposed Pad
Meter Type
3 Phase
Supply Voltage Range
3V To 3.6V
Operating Temperature Range
-40°C To +85°C
Digital Ic Case Style
LFCSP
No. Of Pins
40
Msl
MSL 1 - Unlimited
Peak Reflow Compatible (260 C)
Yes
Supply Voltage Min
3V
Rohs Compliant
Yes
Leaded Process Compatible
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADE7878ACPZ
Manufacturer:
ST
Quantity:
7 500
Part Number:
ADE7878ACPZ
Manufacturer:
ADI
Quantity:
30
Part Number:
ADE7878ACPZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADE7878ACPZ-RL
Manufacturer:
AD
Quantity:
210
Part Number:
ADE7878ACPZ-RL
Manufacturer:
RICOH
Quantity:
4 100
ADE7854/ADE7858/ADE7868/ADE7878
Bit 0 (NLOAD) in the STATUS1 register is set when this no
load condition in one of the three phases is triggered. Bits[2:0]
(NLPHASE[2:0]) in the PHNOLOAD register indicate the state
of all phases relative to a no load condition and are set simulta-
neously with Bit NLOAD in the STATUS1 register. NLPHASE[0]
indicates the state of Phase A, NLPHASE[1] indicates the state
of Phase B, and NLPHASE[2] indicates the state of Phase C.
When Bit NLPHASE[x] is cleared to 0, it means the phase is out
of a no load condition. When set to 1, it means the phase is in a
no load condition.
An interrupt attached to Bit 0 (NLOAD) in the STATUS1
register can be enabled by setting Bit 0 in the MASK1 register.
If enabled, the IRQ1 pin is set to low, and the status bit is set
to 1 whenever one of three phases enters or exits this no load
condition. To find the phase that triggered the interrupt, the
PHNOLOAD register is read immediately after reading the
STATUS1 register. Next, the status bit is cleared, and the IRQ1
pin is set to high by writing to the STATUS1 register with the
corresponding bit set to 1.
No Load Detection Based on Fundamental Active and
Reactive Powers—ADE7878 Only
This no load condition (available on the ADE7878 only) is
triggered when the absolute values of both phase fundamental
active and reactive powers are less than or equal to the respective
APNOLOAD and VARNOLOAD positive thresholds. In this
case, the fundamental active and reactive energies of that phase
are not accumulated, and no CFx pulses are generated based on
these energies. APNOLOAD and VARNOLOAD are the same
no load thresholds set for the total active and reactive powers.
When APNOLOAD and VARNOLOAD are set to negative
values, this no load detection circuit is disabled.
Bit 1 (FNLOAD) in the STATUS1 register is set when this no
load condition in one of the three phases is triggered. Bits[5:3]
(FNLPHASE[2:0]) in the PHNOLOAD register indicate the
state of all phases relative to a no load condition and are set
simultaneously with Bit FNLOAD in the STATUS1 register.
FNLPHASE[0] indicates the state of Phase A, FNLPHASE[1]
indicates the state of Phase B, and FNLPHASE[2] indicates the
state of Phase C. When Bit FNLPHASE[x] is cleared to 0, it
means the phase is out of the no load condition. When set to 1,
it means the phase is in a no load condition.
An interrupt attached to the Bit 1 (FNLOAD) in the STATUS1
register can be enabled by setting Bit 1 in the MASK1 register. If
enabled, the IRQ1 pin is set low and the status bit is set to 1
whenever one of three phases enters or exits this no load
condition. To find the phase that triggered the interrupt, the
PHNOLOAD register is read immediately after reading the
STATUS1 register. Then the status bit is cleared and the IRQ1
pin is set back high by writing to the STATUS1 register with the
corresponding bit set to 1.
Rev. D | Page 62 of 96
No Load Detection Based on Apparent Power
This no load condition is triggered when the absolute value
of phase apparent power is less than or equal to the threshold
indicated in the VANOLOAD 24-bit signed register. In this
case, the apparent energy of that phase is not accumulated
and no CFx pulses are generated based on this energy. The
VANOLOAD register represents the positive no load level
of apparent power relative to PMAX, the maximum apparent
power obtained when full-scale voltages and currents are
provided at the ADC inputs. The expression used to compute
the VANOLOAD signed 24-bit value is
where:
PMAX = 33,516,139 = 0x1FF6A6B, the instantaneous apparent
power computed when the ADC inputs are at full scale.
U
the ADC inputs are at full scale.
U
I
starts measuring.
When the VANOLOAD register is set to negative values, the no
load detection circuit is disabled.
As stated in the Current Waveform Gain Registers section, the
serial ports of the ADE7854/ADE7858/ADE7868/ADE7878
work on 32-, 16-, or 8-bit words and the DSP works on 28 bits.
Similar to the registers presented in Figure 33, the VANOLOAD
24-bit signed register is accessed as a 32-bit register with the
four MSBs padded with 0s and sign extended to 28 bits.
Bit 2 (VANLOAD) in the STATUS1 register is set when this no
load condition in one of the three phases is triggered. Bits[8:6]
(VANLPHASE[2:0]) in the PHNOLOAD register indicate the
state of all phases relative to a no load condition and they are set
simultaneously with Bit VANLOAD in the STATUS1 register:
When Bit VANLPHASE[x] is cleared to 0, it means the phase is
out of no load condition. When set to 1, it means the phase is in
no load condition.
An interrupt attached to Bit 2 (VANLOAD) in the STATUS1
register is enabled by setting Bit 2 in the MASK1 register. If
enabled, the IRQ1 pin is set low and the status bit is set to 1
whenever one of three phases enters or exits this no load
condition. To find the phase that triggered the interrupt, the
PHNOLOAD register is read immediately after reading the
STATUS1 register. Next, the status bit is cleared, and the IRQ1
pin is set to high by writing to the STATUS1 register with the
corresponding bit set to 1.
NOLOAD
FS
n
is the nominal rms value of phase voltage.
, I
Bit VANLPHASE[0] indicates the state of Phase A.
Bit VANLPHASE[1] indicates the state of Phase B.
Bit VANLPHASE[2] indicates the state of Phase C.
VANOLOAD
FS
are the rms values of phase voltages and currents when
is the minimum rms value of phase current the meter
=
U
U
FS
n
×
I
NOLOAD
I
FS
×
PMAX
(48)

Related parts for ADE7878ACPZ