DSPIC30F5015-30I/PT Microchip Technology Inc., DSPIC30F5015-30I/PT Datasheet - Page 27

no-image

DSPIC30F5015-30I/PT

Manufacturer Part Number
DSPIC30F5015-30I/PT
Description
DSP, 16-Bit, 66 KB Flash, 2KB RAM, 52 I/O, TQFP-64
Manufacturer
Microchip Technology Inc.
Type
DSPr
Datasheet

Specifications of DSPIC30F5015-30I/PT

A/d Inputs
16-Channels, 10-Bit
Cpu Speed
30 MIPS
Eeprom Memory
1K Bytes
Input Output
52
Interface
CAN, I2C, SPI, UART/USART
Ios
52
Memory Type
Flash
Number Of Bits
16
Package Type
64-pin TQFP
Programmable Memory
66K Bytes
Ram Size
2K Bytes
Timers
5-16-bit, 2-32-bit
Voltage, Range
2.5-5.5
Lead Free Status / Rohs Status
RoHS Compliant part Electrostatic Device

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F5015-30I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F5015-30I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F5015-30I/PT
0
3.1.1
This architecture fetches 24-bit wide program memory.
Consequently, instructions are always aligned. How-
ever, as the architecture is modified Harvard, data can
also be present in program space.
There are two methods by which program space can
be accessed; via special table instructions, or through
the remapping of a 16K word program space page into
the upper half of data space (see Section 3.1.2 “Data
Access From Program Memory Using Program
Space Visibility”). The TBLRDL and TBLWTL instruc-
tions offer a direct method of reading or writing the least
significant word of any address within program space,
without going through data space. The TBLRDH and
TBLWTH instructions are the only method whereby the
upper 8 bits of a program space word can be accessed
as data.
The PC is incremented by two for each successive
24-bit program word. This allows program memory
addresses to directly map to data space addresses.
Program memory can thus be regarded as two 16-bit
word wide address spaces, residing side by side, each
with the same address range. TBLRDL and TBLWTL
access the space that contains the least significant
word, and TBLRDH and TBLWTH access the space that
contains the MSB.
Figure 3-2 shows how the EA is created for table oper-
ations and data space accesses (PSV = 1). Here,
P<23:0> refers to a program space word, whereas
D<15:0> refers to a data space word.
FIGURE 3-3:
© 2007 Microchip Technology Inc.
Program Memory
‘Phantom’ Byte
(Read as ‘0’).
DATA ACCESS FROM PROGRAM
MEMORY USING TABLE
INSTRUCTIONS
PC Address
0x000006
0x000004
0x000000
0x000002
PROGRAM DATA TABLE ACCESS (LEAST SIGNIFICANT WORD)
00000000
00000000
00000000
00000000
23
TBLRDL.W
16
A set of table instructions are provided to move byte or
word-sized data to and from program space.
1.
2.
3.
4.
dsPIC30F5015/5016
TBLRDL: Table Read Low
Word: Read the least significant word of the
program address;
P<15:0> maps to D<15:0>.
Byte: Read one of the LSBs of the program
address;
P<7:0> maps to the destination byte when byte
select = 0;
P<15:8> maps to the destination byte when byte
select = 1.
TBLWTL: Table Write Low (refer to Section 6.0
“Flash Program Memory” for details on Flash
Programming).
TBLRDH: Table Read High
Word: Read the most significant word of the
program address;
P<23:16> maps to D<7:0>; D<15:8> always
is = 0.
Byte: Read one of the MSBs of the program
address;
P<23:16> maps to the destination byte when
byte select = 0;
The destination byte will always be = 0 when
byte select = 1.
TBLWTH: Table Write High (refer to Section 6.0
“Flash Program Memory” for details on Flash
Programming).
TBLRDL.B (Wn<0> = 1)
8
TBLRDL.B (Wn<0> = 0)
0
DS70149C-page 25

Related parts for DSPIC30F5015-30I/PT